Suppr超能文献

由于头部角速度剖面的形状变化和简化导致的脑应变不确定性。

Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles.

作者信息

Zhao Wei, Ji Songbai

机构信息

Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA.

Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.

出版信息

Biomech Model Mechanobiol. 2017 Apr;16(2):449-461. doi: 10.1007/s10237-016-0829-7. Epub 2016 Sep 19.

Abstract

Head angular velocity, instead of acceleration, is more predictive of brain strains. Surprisingly, no study exists that investigates how shape variation in angular velocity profiles affects brain strains, beyond characteristics such as peak magnitude and impulse duration. In this study, we evaluated brain strain uncertainty due to variation in angular velocity profiles and further compared with that resulting from simplifying the profiles into idealized shapes. To do so, we used reconstructed head impacts from American National Football League for shape extraction and simulated head uniaxial coronal rotations from onset to full stop. The velocity profiles were scaled to maintain an identical peak velocity magnitude and duration in order to isolate the shape for investigation. Element-wise peak maximum principal strains from 44 selected impacts were obtained. We found that the shape of angular velocity profile could significantly affect brain strain magnitude (e.g., percentage difference of 4.29-17.89 % in the whole brain relative to the group average, with cumulative strain damage measure (CSDM) uncertainty range of 23.9 %) but not pattern (correlation coefficient of 0.94-0.99). Strain differences resulting from simplifying angular velocity profiles into idealized shapes were largely within the range due to shape variation, in both percentage difference and CSDM (signed difference of 3.91 % on average, with a typical range of 0-6 %). These findings provide important insight into the uncertainty or confidence in the performance of kinematics-based injury metrics. More importantly, they suggest the feasibility to simplify head angular velocity profiles into idealized shapes, at least within the confinements of the profiles evaluated, to enable real-time strain estimation via pre-computation in the future.

摘要

头部角速度而非加速度,对脑应变的预测性更强。令人惊讶的是,除了峰值大小和脉冲持续时间等特征外,尚无研究调查角速度剖面的形状变化如何影响脑应变。在本研究中,我们评估了由于角速度剖面变化导致的脑应变不确定性,并进一步与将剖面简化为理想化形状所产生的不确定性进行了比较。为此,我们使用了美国国家橄榄球联盟重建的头部撞击数据进行形状提取,并模拟了从开始到完全停止的头部单轴冠状旋转。为了分离出用于研究的形状,我们对标定速度剖面以保持相同的峰值速度大小和持续时间。获得了44次选定撞击的逐元素峰值最大主应变。我们发现,角速度剖面的形状可显著影响脑应变大小(例如,相对于组平均值,全脑的百分比差异为4.29 - 17.89%,累积应变损伤测量(CSDM)的不确定性范围为23.9%),但不影响模式(相关系数为0.94 - 0.99)。将角速度剖面简化为理想化形状所导致的应变差异,在百分比差异和CSDM方面,很大程度上都在形状变化所致的范围内(平均符号差异为3.91%,典型范围为0 - 6%)。这些发现为基于运动学的损伤指标性能的不确定性或置信度提供了重要见解。更重要的是,它们表明将头部角速度剖面简化为理想化形状是可行的,至少在所评估剖面的范围内是可行的,以便未来通过预计算实现实时应变估计。

相似文献

1
Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles.
Biomech Model Mechanobiol. 2017 Apr;16(2):449-461. doi: 10.1007/s10237-016-0829-7. Epub 2016 Sep 19.
2
Performance Evaluation of a Pre-computed Brain Response Atlas in Dummy Head Impacts.
Ann Biomed Eng. 2017 Oct;45(10):2437-2450. doi: 10.1007/s10439-017-1888-3. Epub 2017 Jul 14.
3
Evaluation of a coplanar 6a3ω configuration in the Hybrid III 50th percentile male head.
Traffic Inj Prev. 2017 May 29;18(sup1):S129-S135. doi: 10.1080/15389588.2017.1318210.
5
Predictors for traumatic brain injuries evaluated through accident reconstructions.
Stapp Car Crash J. 2007 Oct;51:81-114. doi: 10.4271/2007-22-0003.
6
Predictive Factors of Kinematics in Traumatic Brain Injury from Head Impacts Based on Statistical Interpretation.
Ann Biomed Eng. 2021 Oct;49(10):2901-2913. doi: 10.1007/s10439-021-02813-z. Epub 2021 Jul 9.
7
Mechanisms and variances of rotation-induced brain injury: a parametric investigation between head kinematics and brain strain.
Biomech Model Mechanobiol. 2020 Dec;19(6):2323-2341. doi: 10.1007/s10237-020-01341-4. Epub 2020 May 24.
8
Investigation of Head Kinematics and Brain Strain Response During Soccer Heading Using a Custom-Fit Instrumented Mouthguard.
Ann Biomed Eng. 2024 Apr;52(4):934-945. doi: 10.1007/s10439-023-03430-8. Epub 2024 Jan 19.
10
Assessment of Kinematic Brain Injury Metrics for Predicting Strain Responses in Diverse Automotive Impact Conditions.
Ann Biomed Eng. 2016 Dec;44(12):3705-3718. doi: 10.1007/s10439-016-1697-0. Epub 2016 Jul 19.

引用本文的文献

1
Effects of anatomy and head motion on spatial patterns of deformation in the human brain.
Ann Biomed Eng. 2025 Apr;53(4):867-880. doi: 10.1007/s10439-024-03671-1. Epub 2024 Dec 31.
3
American Football On-Field Head Impact Kinematics: Influence of Acceleration Signal Characteristics on Peak Maximal Principal Strain.
Ann Biomed Eng. 2024 Aug;52(8):2134-2150. doi: 10.1007/s10439-024-03514-z. Epub 2024 May 17.
4
Efficient Generation of Pretraining Samples for Developing a Deep Learning Brain Injury Model via Transfer Learning.
Ann Biomed Eng. 2024 Oct;52(10):2726-2740. doi: 10.1007/s10439-023-03354-3. Epub 2023 Aug 29.
7
Use of Brain Biomechanical Models for Monitoring Impact Exposure in Contact Sports.
Ann Biomed Eng. 2022 Nov;50(11):1389-1408. doi: 10.1007/s10439-022-02999-w. Epub 2022 Jul 22.
8
American Football Helmet Effectiveness Against a Strain-Based Concussion Mechanism.
Ann Biomed Eng. 2022 Nov;50(11):1498-1509. doi: 10.1007/s10439-022-03005-z. Epub 2022 Jul 11.
9
Real-time dynamic simulation for highly accurate spatiotemporal brain deformation from impact.
Comput Methods Appl Mech Eng. 2022 May 1;394. doi: 10.1016/j.cma.2022.114913. Epub 2022 Apr 9.
10
Group characterization of impact-induced, human brain kinematics.
J R Soc Interface. 2021 Jun;18(179):20210251. doi: 10.1098/rsif.2021.0251. Epub 2021 Jun 23.

本文引用的文献

1
Assessment of Kinematic Brain Injury Metrics for Predicting Strain Responses in Diverse Automotive Impact Conditions.
Ann Biomed Eng. 2016 Dec;44(12):3705-3718. doi: 10.1007/s10439-016-1697-0. Epub 2016 Jul 19.
2
Real-time, whole-brain, temporally resolved pressure responses in translational head impact.
Interface Focus. 2016 Feb 6;6(1):20150091. doi: 10.1098/rsfs.2015.0091.
3
White Matter Injury Susceptibility via Fiber Strain Evaluation Using Whole-Brain Tractography.
J Neurotrauma. 2016 Oct 15;33(20):1834-1847. doi: 10.1089/neu.2015.4239. Epub 2016 Mar 30.
4
Head injury predictors in sports trauma--a state-of-the-art review.
Proc Inst Mech Eng H. 2015 Aug;229(8):592-608. doi: 10.1177/0954411915592906.
6
Mechanics of the brain: perspectives, challenges, and opportunities.
Biomech Model Mechanobiol. 2015 Oct;14(5):931-65. doi: 10.1007/s10237-015-0662-4. Epub 2015 Feb 26.
7
Six Degree-of-Freedom Measurements of Human Mild Traumatic Brain Injury.
Ann Biomed Eng. 2015 Aug;43(8):1918-34. doi: 10.1007/s10439-014-1212-4. Epub 2014 Dec 23.
8
A Pre-computed Brain Response Atlas for Instantaneous Strain Estimation in Contact Sports.
Ann Biomed Eng. 2015 Aug;43(8):1877-95. doi: 10.1007/s10439-014-1193-3. Epub 2014 Dec 2.
9
Brain pressure responses in translational head impact: a dimensional analysis and a further computational study.
Biomech Model Mechanobiol. 2015 Aug;14(4):753-66. doi: 10.1007/s10237-014-0634-0. Epub 2014 Nov 21.
10
Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion.
J Neurotrauma. 2015 Apr 1;32(7):441-54. doi: 10.1089/neu.2013.3268. Epub 2015 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验