Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01605, USA.
Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
Ann Biomed Eng. 2024 Oct;52(10):2726-2740. doi: 10.1007/s10439-023-03354-3. Epub 2023 Aug 29.
The large amount of training samples required to develop a deep learning brain injury model demands enormous computational resources. Here, we study how a transformer neural network (TNN) of high accuracy can be used to efficiently generate pretraining samples for a convolutional neural network (CNN) brain injury model to reduce computational cost. The samples use synthetic impacts emulating real-world events or augmented impacts generated from limited measured impacts. First, we verify that the TNN remains highly accurate for the two impact types (N = 100 each; of 0.948-0.967 with root mean squared error, RMSE, ~ 0.01, for voxelized peak strains). The TNN-estimated samples (1000-5000 for each data type) are then used to pretrain a CNN, which is further finetuned using directly simulated training samples (250-5000). An independent measured impact dataset considered of complete capture of impact event is used to assess estimation accuracy (N = 191). We find that pretraining can significantly improve CNN accuracy via transfer learning compared to a baseline CNN without pretraining. It is most effective when the finetuning dataset is relatively small (e.g., 2000-4000 pretraining synthetic or augmented samples improves success rate from 0.72 to 0.81 with 500 finetuning samples). When finetuning samples reach 3000 or more, no obvious improvement occurs from pretraining. These results support using the TNN to rapidly generate pretraining samples to facilitate a more efficient training strategy for future deep learning brain models, by limiting the number of costly direct simulations from an alternative baseline model. This study could contribute to a wider adoption of deep learning brain injury models for large-scale predictive modeling and ultimately, enhancing safety protocols and protective equipment.
开发深度学习脑损伤模型需要大量的训练样本,这需要巨大的计算资源。在这里,我们研究如何使用高精度的变压器神经网络(TNN)有效地生成卷积神经网络(CNN)脑损伤模型的预训练样本,以降低计算成本。这些样本使用模拟真实世界事件的合成冲击或从有限的测量冲击中增强的冲击生成。首先,我们验证了 TNN 对于两种冲击类型仍然具有很高的准确性(每种类型 N=100;峰值应变体素化的均方根误差,RMSE,~0.01,为 0.948-0.967)。然后,使用 TNN 估计的样本(每种数据类型 1000-5000 个)对 CNN 进行预训练,然后使用直接模拟的训练样本(250-5000 个)对其进行微调。使用考虑到冲击事件完全捕获的独立测量冲击数据集来评估估计准确性(N=191)。我们发现,与没有预训练的基线 CNN 相比,通过迁移学习,预训练可以显著提高 CNN 的准确性。当微调数据集相对较小时,它最为有效(例如,使用 2000-4000 个预训练的合成或增强样本可以将成功率从 0.72 提高到 0.81,而使用 500 个微调样本)。当微调样本达到 3000 个或更多时,预训练不会带来明显的改进。这些结果支持使用 TNN 快速生成预训练样本,以便为未来的深度学习脑模型提供更有效的训练策略,通过限制从替代基线模型进行的昂贵的直接模拟的数量。这项研究有助于更广泛地采用深度学习脑损伤模型进行大规模预测建模,最终增强安全协议和防护设备。