Porco Silvana, Pěnčík Aleš, Rashed Afaf, Voß Ute, Casanova-Sáez Rubén, Bishopp Anthony, Golebiowska Agata, Bhosale Rahul, Swarup Ranjan, Swarup Kamal, Peňáková Pavlína, Novák Ondřej, Staswick Paul, Hedden Peter, Phillips Andrew L, Vissenberg Kris, Bennett Malcolm J, Ljung Karin
Centre for Plant Integrative Biology, Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden; Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Academy of Sciences of the Czech Republic (AS CR), CZ-78371 Olomouc, Czech Republic; Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic;
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11016-21. doi: 10.1073/pnas.1604375113. Epub 2016 Sep 20.
Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control the metabolism and homeostasis of the major form of auxin in plants, indole-3-acetic acid (IAA), remains unclear. In this paper, we initially describe the function of the Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1 (AtDAO1). Transcriptional and translational reporter lines revealed that AtDAO1 encodes a highly root-expressed, cytoplasmically localized IAA oxidase. Stable isotope-labeled IAA feeding studies of loss and gain of function AtDAO1 lines showed that this oxidase represents the major regulator of auxin degradation to 2-oxoindole-3-acetic acid (oxIAA) in Arabidopsis Surprisingly, AtDAO1 loss and gain of function lines exhibited relatively subtle auxin-related phenotypes, such as altered root hair length. Metabolite profiling of mutant lines revealed that disrupting AtDAO1 regulation resulted in major changes in steady-state levels of oxIAA and IAA conjugates but not IAA. Hence, IAA conjugation and catabolism seem to regulate auxin levels in Arabidopsis in a highly redundant manner. We observed that transcripts of AtDOA1 IAA oxidase and GH3 IAA-conjugating enzymes are auxin-inducible, providing a molecular basis for their observed functional redundancy. We conclude that the AtDAO1 gene plays a key role regulating auxin homeostasis in Arabidopsis, acting in concert with GH3 genes, to maintain auxin concentration at optimal levels for plant growth and development.
生长素是植物中的关键信号,几乎调控着植物生长发育的各个方面。在剖析生长素运输、感知和响应的分子基础方面已取得重大突破。相比之下,植物如何控制生长素在植物中的主要形式吲哚 - 3 - 乙酸(IAA)的代谢和稳态仍不清楚。在本文中,我们首先描述了拟南芥生长素氧化双加氧酶1(AtDAO1)基因的功能。转录和翻译报告株系表明,AtDAO1编码一种在根中高度表达、定位于细胞质的IAA氧化酶。对功能缺失和功能获得的AtDAO1株系进行稳定同位素标记的IAA饲喂研究表明,这种氧化酶是拟南芥中生长素降解为2 - 氧代吲哚 - 3 - 乙酸(oxIAA)的主要调节因子。令人惊讶的是,功能缺失和功能获得的AtDAO1株系表现出相对微妙的生长素相关表型,如根毛长度改变。突变株系的代谢物谱分析表明,破坏AtDAO1的调控会导致oxIAA和IAA共轭物的稳态水平发生重大变化,但不会影响IAA。因此,IAA共轭作用和分解代谢似乎以高度冗余的方式调节拟南芥中的生长素水平。我们观察到AtDOA1 IAA氧化酶和GH3 IAA共轭酶的转录本是生长素诱导型的,这为它们观察到的功能冗余提供了分子基础。我们得出结论,AtDAO1基因在调节拟南芥生长素稳态中起关键作用,与GH3基因协同作用,将生长素浓度维持在植物生长发育的最佳水平。