Mellor Nathan, Band Leah R, Pěnčík Aleš, Novák Ondřej, Rashed Afaf, Holman Tara, Wilson Michael H, Voß Ute, Bishopp Anthony, King John R, Ljung Karin, Bennett Malcolm J, Owen Markus R
Centre for Plant Integrative Biology, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom; Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden;
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11022-7. doi: 10.1073/pnas.1604458113. Epub 2016 Sep 20.
The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1 Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development.
植物激素生长素是植物生长发育的关键调节因子,在理解生长素运输和信号传导方面已取得了重大进展。在此,我们表明生长素代谢和稳态也受到复杂的调控。拟南芥中主要的生长素降解途径包括由拟南芥生长素氧化双加氧酶1/2(AtDAO1/2)进行的氧化作用以及由 Gretchen Hagen3s(GH3s)进行的共轭作用。dao1 - 1根组织的代谢谱分析显示,氧化产物2 - 氧代吲哚 - 3 - 乙酸(oxIAA)减少了50%,而共轭形式的吲哚 - 3 - 乙酸天冬氨酸(IAA - Asp)和吲哚 - 3 - 乙酸谷氨酸(IAA - Glu)分别增加了438倍和240倍,而生长素水平仍接近野生型。通过将参数值拟合到这些代谢途径的数学模型中,我们发现,除了氧化作用减弱外,dao1 - 1中生长素的生物合成和共轭作用也增强了。AtDAO1和GH3基因的转录本在不同的时间尺度和浓度范围内对生长素做出反应而增加。将AtDAO1和GH3的这种调控纳入扩展模型后发现,在较低激素浓度下,生长素氧化对生长素稳态更为重要,而在高生长素水平下,生长素共轭作用最为显著。最后,将我们的稳态模型嵌入多细胞模拟中以评估dao1 - 1突变体的空间效应,结果表明根外部组织中的生长素增加,这与dao1 - 1突变体的根毛表型一致。我们得出结论,生长素稳态依赖于AtDAO1与GH3协同作用,将生长素维持在植物生长发育的最佳水平。