Suppr超能文献

主题建模概述及其在生物信息学中的当前应用。

An overview of topic modeling and its current applications in bioinformatics.

作者信息

Liu Lin, Tang Lin, Dong Wen, Yao Shaowen, Zhou Wei

机构信息

School of Information, Yunnan University, Kunming, 650091 Yunnan China ; School of Information (Key Laboratory of Educational Informatization for Nationalities Ministry of Education), Yunnan Normal University, Kunming, 650092 Yunnan China.

Key Laboratory of Educational Informatization for Nationalities Ministry of Education, Yunnan Normal University, Kunming, 650092 Yunnan China.

出版信息

Springerplus. 2016 Sep 20;5(1):1608. doi: 10.1186/s40064-016-3252-8. eCollection 2016.

Abstract

BACKGROUND

With the rapid accumulation of biological datasets, machine learning methods designed to automate data analysis are urgently needed. In recent years, so-called topic models that originated from the field of natural language processing have been receiving much attention in bioinformatics because of their interpretability. Our aim was to review the application and development of topic models for bioinformatics.

DESCRIPTION

This paper starts with the description of a topic model, with a focus on the understanding of topic modeling. A general outline is provided on how to build an application in a topic model and how to develop a topic model. Meanwhile, the literature on application of topic models to biological data was searched and analyzed in depth. According to the types of models and the analogy between the concept of document-topic-word and a biological object (as well as the tasks of a topic model), we categorized the related studies and provided an outlook on the use of topic models for the development of bioinformatics applications.

CONCLUSION

Topic modeling is a useful method (in contrast to the traditional means of data reduction in bioinformatics) and enhances researchers' ability to interpret biological information. Nevertheless, due to the lack of topic models optimized for specific biological data, the studies on topic modeling in biological data still have a long and challenging road ahead. We believe that topic models are a promising method for various applications in bioinformatics research.

摘要

背景

随着生物数据集的快速积累,迫切需要能够实现数据分析自动化的机器学习方法。近年来,源自自然语言处理领域的所谓主题模型因其可解释性在生物信息学中受到了广泛关注。我们的目的是综述主题模型在生物信息学中的应用与发展。

描述

本文首先对主题模型进行了描述,重点在于对主题建模的理解。提供了关于如何在主题模型中构建应用以及如何开发主题模型的总体概述。同时,深入检索和分析了关于主题模型应用于生物数据的文献。根据模型类型以及文档 - 主题 - 词概念与生物对象之间的类比(以及主题模型的任务),我们对相关研究进行了分类,并对主题模型在生物信息学应用开发中的使用前景进行了展望。

结论

主题建模是一种有用的方法(与生物信息学中传统的数据简化方法相比),增强了研究人员解释生物信息的能力。然而,由于缺乏针对特定生物数据优化的主题模型,生物数据中主题建模的研究仍面临漫长且具有挑战性的道路。我们相信主题模型是生物信息学研究中各种应用的一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/797a/5028368/3664ffeb87b5/40064_2016_3252_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验