Suppr超能文献

使用概率主题模型从事件日志中发现临床路径模式。

Discovery of clinical pathway patterns from event logs using probabilistic topic models.

作者信息

Huang Zhengxing, Dong Wei, Ji Lei, Gan Chenxi, Lu Xudong, Duan Huilong

机构信息

College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhou Yiqing Building 510, Zheda Road 38#, Hangzhou, Zhejiang 310008, China.

Department of Cardiology, Chinese PLA General Hospital, China.

出版信息

J Biomed Inform. 2014 Feb;47:39-57. doi: 10.1016/j.jbi.2013.09.003. Epub 2013 Sep 25.

Abstract

Discovery of clinical pathway (CP) patterns has experienced increased attention over the years due to its importance for revealing the structure, semantics and dynamics of CPs, and to its usefulness for providing clinicians with explicit knowledge which can be directly used to guide treatment activities of individual patients. Generally, discovery of CP patterns is a challenging task as treatment behaviors in CPs often have a large variability depending on factors such as time, location and patient individual. Based on the assumption that CP patterns can be derived from clinical event logs which usually record various treatment activities in CP executions, this study proposes a novel approach to CP pattern discovery by modeling CPs using mixtures of an extension to the Latent Dirichlet Allocation family that jointly models various treatment activities and their occurring time stamps in CPs. Clinical case studies are performed to evaluate the proposed approach via real-world data sets recording typical treatment behaviors in patient careflow. The obtained results demonstrate the suitability of the proposed approach for CP pattern discovery, and indicate the promise in research efforts related to CP analysis and optimization.

摘要

近年来,临床路径(CP)模式的发现受到了越来越多的关注,这是因为它对于揭示临床路径的结构、语义和动态变化具有重要意义,并且有助于为临床医生提供明确的知识,这些知识可直接用于指导个体患者的治疗活动。一般来说,临床路径模式的发现是一项具有挑战性的任务,因为临床路径中的治疗行为通常会因时间、地点和患者个体等因素而存在很大差异。基于临床路径模式可以从临床事件日志中推导出来这一假设(临床事件日志通常记录临床路径执行过程中的各种治疗活动),本研究提出了一种新的临床路径模式发现方法,即通过使用潜在狄利克雷分配(Latent Dirichlet Allocation)族扩展的混合模型对临床路径进行建模,该混合模型联合对临床路径中的各种治疗活动及其发生时间戳进行建模。通过记录患者护理流程中典型治疗行为的真实世界数据集进行临床案例研究,以评估所提出的方法。获得的结果证明了所提出的方法适用于临床路径模式发现,并表明在与临床路径分析和优化相关的研究工作中具有前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验