Wojtys Edward M, Beaulieu Mélanie L, Ashton-Miller James A
MedSport, Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, 48109.
Biomechanics Research Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109.
J Orthop Res. 2016 Dec;34(12):2059-2068. doi: 10.1002/jor.23441. Epub 2016 Oct 3.
In this paper, we review a series of studies that we initiated to examine mechanisms of anterior cruciate ligament (ACL) injury in the hope that these injuries, and their sequelae, can be better prevented. First, using the earliest in vitro model of a simulated single-leg jump landing or pivot cut with realistic knee loading rates and trans-knee muscle forces, we identified the worst-case dynamic knee loading that causes the greatest peak ACL strain: Combined knee compression, flexion, and internal tibial rotation. We also identified morphologic factors that help explain individual susceptibility to ACL injury. Second, using the above knee loading, we introduced a possible paradigm shift in ACL research by demonstrating that the human ACL can fail by a sudden rupture in response to repeated sub-maximal knee loading. If that load is repeated often enough over a short time interval, the failure tended to occur proximally, as observed clinically. Third, we emphasize the value of a physical exam of the hip by demonstrating how limited internal axial rotation at the hip both increases the susceptibility to ACL injury in professional athletes, and also increases peak ACL strain during simulated pivot landings, thereby further increasing the risk of ACL fatigue failure. When training at-risk athletes, particularly females with their smaller ACL cross-sections, rationing the number and intensity of worst-case knee loading cycles, such that ligament degradation is within the ACL's ability to remodel, should decrease the risk for ACL rupture due to ligament fatigue failure.© 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2059-2068, 2016.
在本文中,我们回顾了一系列我们发起的研究,这些研究旨在探究前交叉韧带(ACL)损伤的机制,以期能更好地预防这些损伤及其后遗症。首先,我们使用最早的体外模型来模拟单腿跳跃着陆或枢轴转向动作,并施加逼真的膝关节负荷率和跨膝关节肌肉力量,从而确定了导致前交叉韧带应变峰值最大的最坏情况动态膝关节负荷:膝关节压缩、屈曲和胫骨内旋的组合。我们还确定了有助于解释个体对前交叉韧带损伤易感性差异的形态学因素。其次,利用上述膝关节负荷,我们在前交叉韧带研究中引入了一种可能的范式转变,即证明人类前交叉韧带可能会因反复承受次最大膝关节负荷而突然断裂。如果在短时间间隔内足够频繁地重复该负荷,如临床观察到的那样,断裂往往发生在韧带近端。第三,我们通过证明髋关节内轴向旋转受限如何既增加职业运动员前交叉韧带损伤的易感性,又在模拟枢轴着陆时增加前交叉韧带应变峰值,进而进一步增加前交叉韧带疲劳断裂风险,强调了髋关节体格检查的价值。在训练高危运动员时,尤其是那些前交叉韧带横截面较小女性运动员时,合理安排最坏情况膝关节负荷循环的次数和强度,使韧带降解处于前交叉韧带重塑能力范围内,应能降低因韧带疲劳断裂导致前交叉韧带撕裂的风险。© 2016 骨科研究协会。由威利期刊公司出版。《矫形外科学研究》34:2059 - 2068,2016年。