Deng Pan-Yue, Klyachko Vitaly A
Departments of Cell Biology and Physiology, Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.
Departments of Cell Biology and Physiology, Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.
Cell Rep. 2016 Sep 20;16(12):3157-3166. doi: 10.1016/j.celrep.2016.08.046.
Altered neuronal excitability is one of the hallmarks of fragile X syndrome (FXS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Here, we find that pyramidal cells in the entorhinal cortex of Fmr1 KO mice, an established FXS mouse model, display a decreased AP threshold and increased neuronal excitability. The AP threshold changes in Fmr1 KO mice are caused by increased persistent sodium current (INaP). Our results indicate that this abnormal INaP in Fmr1 KO animals is mediated by increased mGluR5-PLC-PKC (metabotropic glutamate receptor 5/phospholipase C/protein kinase C) signaling. These findings identify Na(+) channel dysregulation as a major cause of neuronal hyperexcitability in cortical FXS neurons and uncover a mechanism by which abnormal mGluR5 signaling causes neuronal hyperexcitability in a FXS mouse model.
神经元兴奋性改变是脆性X综合征(FXS)的标志性特征之一,但这种关键神经元功能障碍背后的机制仍知之甚少。在这里,我们发现,在已建立的FXS小鼠模型Fmr1基因敲除小鼠的内嗅皮层中,锥体细胞表现出动作电位(AP)阈值降低和神经元兴奋性增加。Fmr1基因敲除小鼠的AP阈值变化是由持续性钠电流(INaP)增加引起的。我们的结果表明,Fmr1基因敲除动物中这种异常的INaP是由mGluR5-PLC-PKC(代谢型谷氨酸受体5/磷脂酶C/蛋白激酶C)信号增加介导的。这些发现确定钠通道失调是皮质FXS神经元中神经元过度兴奋的主要原因,并揭示了异常mGluR5信号在FXS小鼠模型中导致神经元过度兴奋的机制。