文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

电压非依赖性 SK 通道功能障碍导致敲除小鼠海马神经元过度兴奋。

Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of Knock-Out Mice.

机构信息

Departments of Cell Biology and Physiology.

Biomedical Engineering.

出版信息

J Neurosci. 2019 Jan 2;39(1):28-43. doi: 10.1523/JNEUROSCI.1593-18.2018. Epub 2018 Nov 2.


DOI:10.1523/JNEUROSCI.1593-18.2018
PMID:30389838
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6325266/
Abstract

Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca)-activated K (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS. Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS.

摘要

神经元过度兴奋是脆性 X 综合征(FXS)的主要特征之一,但这种关键功能障碍的分子机制仍知之甚少。在这里,我们报告电压非依赖性钾(K)通道功能障碍在敲除(KO)小鼠 CA3 锥体神经元过度兴奋中的主要作用。我们观察到雄性和雌性小鼠中电压非依赖性小电导钙(Ca)激活 K(SK)电流减少,导致动作电位(AP)阈值降低和中期超极化减少。这些 SK 通道依赖性缺陷导致 CA3 锥体神经元的 AP 放电明显增加和异常输入-输出信号传递。SK 电流缺陷至少部分是由 FMRP 与 SK 通道(特别是 SK2 同工型)的相互作用丧失介导的,而通道表达没有变化。选择性 SK 通道开放剂的细胞内应用或缺乏与多核糖体结合能力的 N 端 FMRP 片段的遗传再引入使 KO 小鼠 CA3 锥体神经元中所有观察到的兴奋性缺陷正常化。这些结果表明,电压非依赖性 SK 通道功能障碍是 KO 小鼠 CA3 神经元过度兴奋的主要原因,并支持脆性 X 智力迟钝蛋白作为神经兴奋性调节剂的关键非翻译依赖性作用。我们的发现可能为改善 FXS 中海马兴奋性缺陷提供新途径。尽管进行了二十年的研究,但目前尚无针对脆性 X 综合征(FXS)的有效治疗方法。神经元过度兴奋被广泛认为是 FXS 的标志之一。到目前为止,FXS 领域的兴奋性研究主要集中在电压门控离子通道上,而电压非依赖性通道的贡献在很大程度上被忽视了。在这里,我们报告电压非依赖性小电导钙激活钾(SK)通道功能障碍导致 FXS 小鼠模型中海马神经元过度兴奋。我们的结果支持这样一种观点,即脆性 X 智力迟钝蛋白的非翻译依赖性功能在调节离子通道活性方面,特别是在 SK 通道方面,在 FXS 的过度兴奋缺陷中起着主要作用。我们的发现可能为改善 FXS 中海马兴奋性缺陷开辟新的方向。

相似文献

[1]
Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of Knock-Out Mice.

J Neurosci. 2018-11-2

[2]
Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome.

J Physiol. 2016-1-1

[3]
Kv7/M channel dysfunction produces hyperexcitability in hippocampal CA1 pyramidal cells of Fmr1 knockout mice.

J Physiol. 2024-8

[4]
Fragile X mental retardation protein modulates somatic D-type K channels and action potential threshold in the mouse prefrontal cortex.

J Neurophysiol. 2020-12-1

[5]
Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome.

J Neurosci. 2019-7-26

[6]
Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo.

J Neurosci. 2016-7-6

[7]
Modulators of Kv3 Potassium Channels Rescue the Auditory Function of Fragile X Mice.

J Neurosci. 2019-4-1

[8]
Increased Persistent Sodium Current Causes Neuronal Hyperexcitability in the Entorhinal Cortex of Fmr1 Knockout Mice.

Cell Rep. 2016-9-20

[9]
Impaired Reliability and Precision of Spiking in Adults But Not Juveniles in a Mouse Model of Fragile X Syndrome.

eNeuro. 2019-12-3

[10]
Fragile X Mental Retardation Protein Bidirectionally Controls Dendritic I in a Cell Type-Specific Manner between Mouse Hippocampus and Prefrontal Cortex.

J Neurosci. 2020-5-28

引用本文的文献

[1]
Neuronal potassium channel activity triggers initiation of mRNA translation through binding of translation regulators.

Sci Adv. 2025-5-30

[2]
Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome.

Biology (Basel). 2025-3-31

[3]
Higher hyperpolarization-activated current in a subpopulation of interneurons in stratum oriens of area CA1 in the hippocampus of fragile X mice.

J Neurophysiol. 2025-5-1

[4]
Molecular Profiling of Mouse Models of Loss or Gain of Function of the KCNT1 (Slack) Potassium Channel and Antisense Oligonucleotide Treatment.

Biomolecules. 2024-11-2

[5]
ErbB inhibition rescues nigral dopamine neuron hyperactivity and repetitive behaviors in a mouse model of fragile X syndrome.

Mol Psychiatry. 2025-5

[6]
Therapeutic efficacy of the BKCa channel opener chlorzoxazone in a mouse model of Fragile X syndrome.

Neuropsychopharmacology. 2024-12

[7]
Multi-level profiling of the Fmr1 KO rat unveils altered behavioral traits along with aberrant glutamatergic function.

Transl Psychiatry. 2024-2-20

[8]
Septotemporal Variation of Information Processing in the Hippocampus of Fmr1 KO Rat.

Dev Neurosci. 2024

[9]
Circuit-based intervention corrects excessive dentate gyrus output in the fragile X mouse model.

Elife. 2024-2-12

[10]
Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome.

Front Cell Neurosci. 2023-12-1

本文引用的文献

[1]
Identification of a molecular locus for normalizing dysregulated GABA release from interneurons in the Fragile X brain.

Mol Psychiatry. 2020-9

[2]
SK channels participate in the formation of after burst hyperpolarization and partly inhibit the burst strength of epileptic ictal discharges.

Mol Med Rep. 2017-11-15

[3]
Dendritic small conductance calcium-activated potassium channels activated by action potentials suppress EPSPs and gate spike-timing dependent synaptic plasticity.

Elife. 2017-10-23

[4]
SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron.

J Neurosci. 2017-11-1

[5]
Increased transient Na conductance and action potential output in layer 2/3 prefrontal cortex neurons of the fmr1 mouse.

J Physiol. 2017-7-1

[6]
Increased Persistent Sodium Current Causes Neuronal Hyperexcitability in the Entorhinal Cortex of Fmr1 Knockout Mice.

Cell Rep. 2016-9-20

[7]
Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines.

PLoS Comput Biol. 2016-5-27

[8]
Cell-Type Specific Channelopathies in the Prefrontal Cortex of the fmr1-/y Mouse Model of Fragile X Syndrome.

eNeuro. 2015-11-17

[9]
Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome.

J Physiol. 2016-1-1

[10]
Altered Neuronal and Circuit Excitability in Fragile X Syndrome.

Neuron. 2015-8-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索