Department of Ecology, Ecosystem Science/Plant Ecology, Technische Universität Berlin, Rothenburgstraße 12, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstraße 111, CH-8903 Birmensdorf, Switzerland.
Sci Total Environ. 2017 Jan 1;574:1261-1275. doi: 10.1016/j.scitotenv.2016.07.174. Epub 2016 Sep 18.
Aboveground carbon (C) sequestration in trees is important in global C dynamics, but reliable techniques for its modeling in highly productive and heterogeneous ecosystems are limited. We applied an extended dendrochronological approach to disentangle the functioning of drivers from the atmosphere (temperature, precipitation), the lithosphere (sedimentation rate), the hydrosphere (groundwater table, river water level fluctuation), the biosphere (tree characteristics), and the anthroposphere (dike construction). Carbon sequestration in aboveground biomass of riparian Quercus robur L. and Fraxinus excelsior L. was modeled (1) over time using boosted regression tree analysis (BRT) on cross-datable trees characterized by equal annual growth ring patterns and (2) across space using a subsequent classification and regression tree analysis (CART) on cross-datable and not cross-datable trees. While C sequestration of cross-datable Q. robur responded to precipitation and temperature, cross-datable F. excelsior also responded to a low Danube river water level. However, CART revealed that C sequestration over time is governed by tree height and parameters that vary over space (magnitude of fluctuation in the groundwater table, vertical distance to mean river water level, and longitudinal distance to upstream end of the study area). Thus, a uniform response to climatic drivers of aboveground C sequestration in Q. robur was only detectable in trees of an intermediate height class and in taller trees (>21.8m) on sites where the groundwater table fluctuated little (≤0.9m). The detection of climatic drivers and the river water level in F. excelsior depended on sites at lower altitudes above the mean river water level (≤2.7m) and along a less dynamic downstream section of the study area. Our approach indicates unexploited opportunities of understanding the interplay of different environmental drivers in aboveground C sequestration. Results may support species-specific and locally adapted forest management plans to increase carbon dioxide sequestration from the atmosphere in trees.
地上碳(C)在树木中的固存对于全球 C 动态具有重要意义,但在高度生产力和异质性生态系统中对其进行建模的可靠技术有限。我们应用扩展的树木年代学方法来分解来自大气(温度、降水)、岩石圈(沉积速率)、水圈(地下水位、河流水位波动)、生物圈(树木特征)和人类圈(堤坝建设)的驱动因素的功能。使用 boosted 回归树分析(BRT)对具有相等年轮模式的可交叉树木进行时间建模,使用随后的分类和回归树分析(CART)对可交叉和不可交叉树木进行空间建模,以模拟河岸栎(Quercus robur L.)和欧洲白蜡(Fraxinus excelsior L.)的地上生物量的碳固存。可交叉 Q. robur 的碳固存对降水和温度有响应,而可交叉 F. excelsior 也对多瑙河低水位有响应。然而,CART 表明,随时间的碳固存受树木高度和空间变化参数(地下水位波动幅度、垂直距离到平均河水位、到研究区上游端的纵向距离)的控制。因此,只有在中等高度类别的树木和较高的树木(>21.8m)中,才能检测到 Q. robur 地上 C 固存对气候驱动因素的一致响应,这些树木位于地下水位波动较小(≤0.9m)的地点。在 F. excelsior 中,对气候驱动因素和河流水位的检测取决于低于平均河水位(≤2.7m)的地点和研究区下游较不活跃的部分。我们的方法表明,在理解地上 C 固存中不同环境驱动因素的相互作用方面,仍有未被利用的机会。研究结果可能支持特定物种和本地化的森林管理计划,以增加树木从大气中吸收二氧化碳。