Suppr超能文献

各向同性全变差正则化在参数图像配准中的位移。

Isotropic Total Variation Regularization of Displacements in Parametric Image Registration.

出版信息

IEEE Trans Med Imaging. 2017 Feb;36(2):385-395. doi: 10.1109/TMI.2016.2610583. Epub 2016 Sep 16.

Abstract

Spatial regularization is essential in image registration, which is an ill-posed problem. Regularization can help to avoid both physically implausible displacement fields and local minima during optimization. Tikhonov regularization (squared l -norm) is unable to correctly represent non-smooth displacement fields, that can, for example, occur at sliding interfaces in the thorax and abdomen in image time-series during respiration. In this paper, isotropic Total Variation (TV) regularization is used to enable accurate registration near such interfaces. We further develop the TV-regularization for parametric displacement fields and provide an efficient numerical solution scheme using the Alternating Directions Method of Multipliers (ADMM). The proposed method was successfully applied to four clinical databases which capture breathing motion, including CT lung and MR liver images. It provided accurate registration results for the whole volume. A key strength of our proposed method is that it does not depend on organ masks that are conventionally required by many algorithms to avoid errors at sliding interfaces. Furthermore, our method is robust to parameter selection, allowing the use of the same parameters for all tested databases. The average target registration error (TRE) of our method is superior (10% to 40%) to other techniques in the literature. It provides precise motion quantification and sliding detection with sub-pixel accuracy on the publicly available breathing motion databases (mean TREs of 0.95 mm for DIR 4D CT, 0.96 mm for DIR COPDgene, 0.91 mm for POPI databases).

摘要

空间正则化在图像配准中至关重要,因为它是一个不适定问题。正则化有助于避免物理上不合理的位移场和优化过程中的局部最小值。Tikhonov 正则化(l 2 范数)无法正确表示非平滑的位移场,例如,在呼吸过程中胸部和腹部的图像时间序列中,在滑动界面处可能会出现这种情况。在本文中,各向同性全变差(TV)正则化用于实现这些界面附近的精确配准。我们进一步为参数化位移场开发了 TV 正则化,并使用交替方向乘子法(ADMM)提供了一种有效的数值求解方案。该方法成功应用于四个捕捉呼吸运动的临床数据库,包括 CT 肺和 MR 肝图像。它为整个体积提供了精确的配准结果。我们提出的方法的一个关键优势是,它不依赖于器官掩模,而许多传统算法都需要器官掩模来避免在滑动界面处出现错误。此外,我们的方法对参数选择具有鲁棒性,允许对所有测试数据库使用相同的参数。与文献中的其他技术相比,我们方法的平均目标配准误差(TRE)具有优势(10%至 40%)。它在公共呼吸运动数据库上提供了亚像素精度的精确运动量化和滑动检测(DIR 4D CT 的平均 TRE 为 0.95mm,DIR COPDgene 的平均 TRE 为 0.96mm,POPI 数据库的平均 TRE 为 0.91mm)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验