Suppr超能文献

基于具有局部低秩差异度量的可变形组配准改进心肌应变估计。

Improve myocardial strain estimation based on deformable groupwise registration with a locally low-rank dissimilarity metric.

作者信息

Chen Haiyang, Gao Juan, Chen Zhuo, Gao Chenhao, Huo Sirui, Jiang Meng, Pu Jun, Hu Chenxi

机构信息

National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

出版信息

BMC Med Imaging. 2024 Dec 5;24(1):330. doi: 10.1186/s12880-024-01519-7.

Abstract

BACKGROUND

Current mainstream cardiovascular magnetic resonance-feature tracking (CMR-FT) methods, including optical flow and pairwise registration, often suffer from the drift effect caused by accumulative tracking errors. Here, we developed a CMR-FT method based on deformable groupwise registration with a locally low-rank (LLR) dissimilarity metric to improve myocardial tracking and strain estimation accuracy.

METHODS

The proposed method, Groupwise-LLR, performs feature tracking by iteratively updating the entire displacement field across all cardiac phases to minimize the sum of the patchwise signal ranks of the deformed movie. The method was compared with alternative CMR-FT methods including the Farneback optical flow, a sequentially pairwise registration method, and a global low rankness-based groupwise registration method via a simulated dataset (n = 20), a public cine data set (n = 100), and an in-house tagging-MRI patient dataset (n = 16). The proposed method was also compared with two general groupwise registration methods, nD + t B-Splines and pTVreg, in simulations and in vivo tracking.

RESULTS

On the simulated dataset, Groupwise-LLR achieved the lowest point tracking errors (p = 0.13 against pTVreg for the temporally averaged point tracking errors in the long-axis view, and p < 0.05 for all other cases), voxelwise strain errors (all p < 0.05), and global strain errors (p = 0.05 against pTVreg for the longitudinal global strain errors, and p < 0.05 for all other cases). On the public dataset, Groupwise-LLR achieved the lowest contour tracking errors (all p < 0.05), reduced the drift effect in late-diastole, and preserved similar inter-observer reproducibility as the alternative methods. On the patient dataset, Groupwise-LLR correlated better with tagging-MRI for radial strains than the other CMR-FT methods in multiple myocardial segments and levels.

CONCLUSIONS

The proposed Groupwise-LLR reduces the drift effect and provides more accurate myocardial tracking and strain estimation than the alternative methods. The method may thus facilitate a more accurate estimation of myocardial strains for clinical assessments of cardiac function.

摘要

背景

当前主流的心血管磁共振特征跟踪(CMR-FT)方法,包括光流法和成对配准法,常常受到累积跟踪误差导致的漂移效应影响。在此,我们开发了一种基于具有局部低秩(LLR)差异度量的可变形组内配准的CMR-FT方法,以提高心肌跟踪和应变估计的准确性。

方法

所提出的Groupwise-LLR方法通过迭代更新所有心动周期的整个位移场来执行特征跟踪,以最小化变形电影的逐块信号秩之和。该方法通过一个模拟数据集(n = 20)、一个公共电影数据集(n = 100)和一个内部标记MRI患者数据集(n = 16),与其他CMR-FT方法进行比较,这些方法包括Farneback光流法、一种顺序成对配准法和一种基于全局低秩性的组内配准法。所提出的方法还在模拟和体内跟踪中与两种通用的组内配准方法,即nD + t B样条法和pTVreg法进行比较。

结果

在模拟数据集上,Groupwise-LLR实现了最低的点跟踪误差(在长轴视图中,时间平均点跟踪误差与pTVreg相比p = 0.13,其他所有情况p < 0.05)、体素应变误差(所有p < 0.05)和全局应变误差(纵向全局应变误差与pTVreg相比p = 0.05,其他所有情况p < 0.05)。在公共数据集上,Groupwise-LLR实现了最低的轮廓跟踪误差(所有p < 0.05),减少了舒张末期的漂移效应,并保持了与其他方法相似的观察者间可重复性。在患者数据集上,在多个心肌节段和层面,Groupwise-LLR在径向应变方面与标记MRI的相关性优于其他CMR-FT方法。

结论

所提出的Groupwise-LLR减少了漂移效应,并且比其他方法提供了更准确的心肌跟踪和应变估计。因此,该方法可能有助于更准确地估计心肌应变,用于心脏功能的临床评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4815/11619273/c4556c462c44/12880_2024_1519_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验