Bunouf P, Molenberghs G
Laboratoires Pierre Fabre, Toulouse, France.
I-BioStat, Universiteit Hasselt and KU Leuven, Hasselt, Belgium.
Pharm Stat. 2016 Nov;15(6):494-506. doi: 10.1002/pst.1780. Epub 2016 Sep 23.
Modern analysis of incomplete longitudinal outcomes involves formulating assumptions about the missingness mechanisms and then using a statistical method that produces valid inferences under this assumption. In this manuscript, we define missingness strategies for analyzing randomized clinical trials (RCTs) based on plausible clinical scenarios. Penalties for dropout are also introduced in an attempt to balance benefits against risks. Some missingness mechanisms are assumed to be non-future dependent, which is a subclass of missing not at random. Non-future dependent stipulates that missingness depends on the past and the present information but not on the future. Missingness strategies are implemented in the pattern-mixture modeling framework using multiple imputation (MI), and it is shown how to estimate the marginal treatment effect. Next, we outline how MI can be used to investigate the impact of dropout strategies in subgroups of interest. Finally, we provide the reader with some points to consider when implementing pattern-mixture modeling-MI analyses in confirmatory RCTs. The data set that motivated our investigation comes from a placebo-controlled RCT design to assess the effect on pain of a new compound. Copyright © 2016 John Wiley & Sons, Ltd.
现代对不完整纵向结果的分析包括对缺失机制做出假设,然后使用一种在该假设下能产生有效推断的统计方法。在本手稿中,我们基于合理的临床情景定义了用于分析随机临床试验(RCT)的缺失策略。还引入了对失访的惩罚措施,以平衡收益与风险。一些缺失机制被假定为非未来依赖型,这是“非随机缺失”的一个子类。非未来依赖型规定缺失取决于过去和当前信息,而不取决于未来。缺失策略在模式混合建模框架中使用多重填补(MI)来实施,并展示了如何估计边际治疗效果。接下来,我们概述了如何使用MI来研究失访策略在感兴趣亚组中的影响。最后,我们为读者提供了在确证性RCT中实施模式混合建模 - MI分析时需要考虑的一些要点。激发我们开展此项研究的数据集来自一项安慰剂对照RCT设计,旨在评估一种新化合物对疼痛的影响。版权所有© 2016约翰威立父子有限公司。