Health Program.
Department of Psychology, University of Notre Dame.
Psychol Methods. 2014 Jun;19(2):188-210. doi: 10.1037/a0033804. Epub 2013 Sep 30.
Randomized longitudinal designs are commonly used in psychological and medical studies to investigate the treatment effect of an intervention or an experimental drug. Traditional linear mixed-effects models for randomized longitudinal designs are limited to maximum-likelihood methods that assume data are missing at random (MAR). In practice, because longitudinal data are often likely to be missing not at random (MNAR), the traditional mixed-effects model might lead to biased estimates of treatment effects. In such cases, an alternative approach is to utilize pattern-mixture models. In this article, a Monte Carlo simulation study compares the traditional mixed-effects model and 2 different approaches to pattern-mixture models (i.e., the differencing-averaging method and the averaging-differencing method) across different missing mechanisms (i.e., MAR, random-coefficient-dependent MNAR, or outcome-dependent MNAR) and different types of treatment-condition-based missingness. Results suggest that the traditional mixed-effects model is well suited for analyzing data with the MAR mechanism whereas the proposed pattern-mixture averaging-differencing model has the best overall performance for analyzing data with the MNAR mechanism. No method was found that could provide unbiased estimates under every missing mechanism, leading to a practical suggestion that researchers need to consider why data are missing and should also consider performing a sensitivity analysis to ascertain the extent to which their results are consistent across various missingness assumptions. Applications of different estimation methods are also illustrated using a real-data example.
随机纵向设计通常用于心理和医学研究中,以研究干预或实验药物的治疗效果。传统的随机纵向设计线性混合效应模型仅限于最大似然方法,该方法假设数据是随机缺失的(MAR)。在实践中,由于纵向数据往往很可能是非随机缺失的(MNAR),传统的混合效应模型可能会导致治疗效果的估计有偏差。在这种情况下,一种替代方法是利用模式混合模型。本文通过蒙特卡罗模拟研究,比较了传统的混合效应模型和 2 种不同的模式混合模型方法(即差分平均法和平均差分法)在不同缺失机制(即 MAR、随机系数相关 MNAR 或结果相关 MNAR)和不同类型的基于治疗条件的缺失情况下的表现。结果表明,传统的混合效应模型非常适合分析具有 MAR 机制的数据,而提出的模式混合平均差分模型在分析具有 MNAR 机制的数据方面具有最佳的整体性能。没有发现任何一种方法可以在每种缺失机制下提供无偏估计,因此提出了一个实际的建议,即研究人员需要考虑数据缺失的原因,并考虑进行敏感性分析,以确定其结果在各种缺失假设下的一致性程度。还通过一个真实数据示例说明了不同估计方法的应用。