Suppr超能文献

具有不同类型不可忽略缺失的随机纵向试验中的处理效应。

Treatment effects in randomized longitudinal trials with different types of nonignorable dropout.

机构信息

Health Program.

Department of Psychology, University of Notre Dame.

出版信息

Psychol Methods. 2014 Jun;19(2):188-210. doi: 10.1037/a0033804. Epub 2013 Sep 30.

Abstract

Randomized longitudinal designs are commonly used in psychological and medical studies to investigate the treatment effect of an intervention or an experimental drug. Traditional linear mixed-effects models for randomized longitudinal designs are limited to maximum-likelihood methods that assume data are missing at random (MAR). In practice, because longitudinal data are often likely to be missing not at random (MNAR), the traditional mixed-effects model might lead to biased estimates of treatment effects. In such cases, an alternative approach is to utilize pattern-mixture models. In this article, a Monte Carlo simulation study compares the traditional mixed-effects model and 2 different approaches to pattern-mixture models (i.e., the differencing-averaging method and the averaging-differencing method) across different missing mechanisms (i.e., MAR, random-coefficient-dependent MNAR, or outcome-dependent MNAR) and different types of treatment-condition-based missingness. Results suggest that the traditional mixed-effects model is well suited for analyzing data with the MAR mechanism whereas the proposed pattern-mixture averaging-differencing model has the best overall performance for analyzing data with the MNAR mechanism. No method was found that could provide unbiased estimates under every missing mechanism, leading to a practical suggestion that researchers need to consider why data are missing and should also consider performing a sensitivity analysis to ascertain the extent to which their results are consistent across various missingness assumptions. Applications of different estimation methods are also illustrated using a real-data example.

摘要

随机纵向设计通常用于心理和医学研究中,以研究干预或实验药物的治疗效果。传统的随机纵向设计线性混合效应模型仅限于最大似然方法,该方法假设数据是随机缺失的(MAR)。在实践中,由于纵向数据往往很可能是非随机缺失的(MNAR),传统的混合效应模型可能会导致治疗效果的估计有偏差。在这种情况下,一种替代方法是利用模式混合模型。本文通过蒙特卡罗模拟研究,比较了传统的混合效应模型和 2 种不同的模式混合模型方法(即差分平均法和平均差分法)在不同缺失机制(即 MAR、随机系数相关 MNAR 或结果相关 MNAR)和不同类型的基于治疗条件的缺失情况下的表现。结果表明,传统的混合效应模型非常适合分析具有 MAR 机制的数据,而提出的模式混合平均差分模型在分析具有 MNAR 机制的数据方面具有最佳的整体性能。没有发现任何一种方法可以在每种缺失机制下提供无偏估计,因此提出了一个实际的建议,即研究人员需要考虑数据缺失的原因,并考虑进行敏感性分析,以确定其结果在各种缺失假设下的一致性程度。还通过一个真实数据示例说明了不同估计方法的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验