Suppr超能文献

处理药物有效性研究中时变混杂的统计方法比较。

Comparison of statistical approaches dealing with time-dependent confounding in drug effectiveness studies.

机构信息

1 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada.

2 Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada.

出版信息

Stat Methods Med Res. 2018 Jun;27(6):1709-1722. doi: 10.1177/0962280216668554. Epub 2016 Sep 21.

Abstract

In longitudinal studies, if the time-dependent covariates are affected by the past treatment, time-dependent confounding may be present. For a time-to-event response, marginal structural Cox models are frequently used to deal with such confounding. To avoid some of the problems of fitting marginal structural Cox model, the sequential Cox approach has been suggested as an alternative. Although the estimation mechanisms are different, both approaches claim to estimate the causal effect of treatment by appropriately adjusting for time-dependent confounding. We carry out simulation studies to assess the suitability of the sequential Cox approach for analyzing time-to-event data in the presence of a time-dependent covariate that may or may not be a time-dependent confounder. Results from these simulations revealed that the sequential Cox approach is not as effective as marginal structural Cox model in addressing the time-dependent confounding. The sequential Cox approach was also found to be inadequate in the presence of a time-dependent covariate. We propose a modified version of the sequential Cox approach that correctly estimates the treatment effect in both of the above scenarios. All approaches are applied to investigate the impact of beta-interferon treatment in delaying disability progression in the British Columbia Multiple Sclerosis cohort (1995-2008).

摘要

在纵向研究中,如果时变协变量受到过去治疗的影响,那么可能存在时变混杂。对于生存时间响应,通常使用边际结构 Cox 模型来处理这种混杂。为了避免拟合边际结构 Cox 模型的一些问题,已经提出了顺序 Cox 方法作为替代方法。尽管估计机制不同,但这两种方法都声称通过适当调整时变混杂来估计治疗的因果效应。我们进行了模拟研究,以评估顺序 Cox 方法在存在可能是也可能不是时变混杂的时变协变量的情况下分析生存时间数据的适用性。这些模拟的结果表明,顺序 Cox 方法在解决时变混杂方面不如边际结构 Cox 模型有效。在存在时变协变量的情况下,顺序 Cox 方法也被发现是不充分的。我们提出了顺序 Cox 方法的一种修正版本,该版本可以正确估计上述两种情况下的治疗效果。所有方法都应用于研究 British Columbia Multiple Sclerosis 队列(1995-2008 年)中β干扰素治疗对延迟残疾进展的影响。

相似文献

1
Comparison of statistical approaches dealing with time-dependent confounding in drug effectiveness studies.
Stat Methods Med Res. 2018 Jun;27(6):1709-1722. doi: 10.1177/0962280216668554. Epub 2016 Sep 21.
3
Comparison of Statistical Approaches for Dealing With Immortal Time Bias in Drug Effectiveness Studies.
Am J Epidemiol. 2016 Aug 15;184(4):325-35. doi: 10.1093/aje/kwv445. Epub 2016 Jul 25.
4
Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men.
Epidemiology. 2000 Sep;11(5):561-70. doi: 10.1097/00001648-200009000-00012.
9
Statistical Methods for Modeling Time-Updated Exposures in Cohort Studies of Chronic Kidney Disease.
Clin J Am Soc Nephrol. 2017 Nov 7;12(11):1892-1899. doi: 10.2215/CJN.00650117. Epub 2017 Aug 17.

本文引用的文献

1
Comparison of Statistical Approaches for Dealing With Immortal Time Bias in Drug Effectiveness Studies.
Am J Epidemiol. 2016 Aug 15;184(4):325-35. doi: 10.1093/aje/kwv445. Epub 2016 Jul 25.
2
Multiple sclerosis in older adults: the clinical profile and impact of interferon Beta treatment.
Biomed Res Int. 2015;2015:451912. doi: 10.1155/2015/451912. Epub 2015 Apr 1.
3
Beta-interferon exposure and onset of secondary progressive multiple sclerosis.
Eur J Neurol. 2015 Jun;22(6):990-1000. doi: 10.1111/ene.12698. Epub 2015 Apr 6.
4
Confounding, effect modification, and the odds ratio: common misinterpretations.
J Clin Epidemiol. 2015 Apr;68(4):470-4. doi: 10.1016/j.jclinepi.2014.12.012. Epub 2015 Jan 8.
8
Studying noncollapsibility of the odds ratio with marginal structural and logistic regression models.
Stat Methods Med Res. 2016 Oct;25(5):1925-1937. doi: 10.1177/0962280213505804. Epub 2013 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验