Suppr超能文献

通过光电建模优化磷化铟纳米线阵列太阳能电池中的短路电流。

Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.

作者信息

Chen Yang, Kivisaari Pyry, Pistol Mats-Erik, Anttu Nicklas

机构信息

Division of Solid State Physics and NanoLund, Lund University, Box 118, 22100 Lund, Sweden.

出版信息

Nanotechnology. 2016 Oct 28;27(43):435404. doi: 10.1088/0957-4484/27/43/435404. Epub 2016 Sep 23.

Abstract

InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.

摘要

具有轴向p-i-n结的磷化铟(InP)纳米线阵列是下一代光伏器件的理想选择,其已证明的效率为13.8%。然而,此类阵列中的短路电流与其吸收性能不匹配。在此,通过光学和电学联合建模,我们研究了光子吸收以及由此产生的光生电子 - 空穴对的分离如何定义和限制纳米线中的短路电流。我们确定了顶部n型段中的光生少数载流子(即空穴)如何扩散到欧姆顶部接触处,在那里它们复合而不产生短路电流。在我们的建模中,这种接触复合可导致短路电流下降60%。为了阻碍这种空穴扩散,我们在n型段中引入渐变掺杂分布以形成前表面势垒。这种方法使短路电流适度增加了5%,但受限于掺杂增加导致的俄歇复合。一种更有效的方法是将n型段换成带隙更高的材料,如磷化镓(GaP)。这样,在n型段中光生的空穴数量会少得多,从而极大地限制了能够扩散并消失在顶部接触中的空穴数量。对于500纳米长的顶部段,采用GaP的方法比采用InP顶部段时的短路电流高50%。如此长的顶部段有助于纳米线阵列太阳能电池的制造和接触。这种管理少数载流子的设计方案可为基于单结和多结纳米线的太阳能电池实现更高性能打开大门。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验