Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
Institute for Computer Science, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
J Exp Bot. 2017 Jan;68(2):117-125. doi: 10.1093/jxb/erw333. Epub 2016 Sep 22.
To feed a world population projected to reach 9 billion people by 2050, the productivity of major crops must be increased by at least 50%. One potential route to boost the productivity of cereals is to equip them genetically with the 'supercharged' C type of photosynthesis; however, the necessary genetic modifications are not sufficiently understood for the corresponding genetic engineering programme. In this opinion paper, we discuss a strategy to solve this problem by developing a new paradigm for plant breeding. We propose combining the bioengineering of well-understood traits with subsequent evolutionary engineering, i.e. mutagenesis and artificial selection. An existing mathematical model of C-C evolution is used to choose the most promising path towards this goal. Based on biomathematical simulations, we engineer Arabidopsis thaliana plants that express the central carbon-fixing enzyme Rubisco only in bundle sheath cells (Ru-BSC plants), the localization characteristic for C plants. This modification will initially be deleterious, forcing the Ru-BSC plants into a fitness valley from where previously inaccessible adaptive steps towards C photosynthesis become accessible through fitness-enhancing mutations. Mutagenized Ru-BSC plants are then screened for improved photosynthesis, and are expected to respond to imposed artificial selection pressures by evolving towards C anatomy and biochemistry.
为了养活预计到 2050 年将达到 90 亿人口的世界,主要作物的生产力必须至少提高 50%。提高谷物生产力的一种潜在途径是从遗传上为它们配备“超级”C 型光合作用;然而,对于相应的基因工程计划,必要的遗传修饰还没有得到充分的理解。在这篇观点文章中,我们讨论了通过开发一种新的植物育种范例来解决这个问题的策略。我们建议将对已知性状的生物工程与随后的进化工程(即诱变和人工选择)相结合。我们利用现有的 C-C 进化数学模型来选择最有前途的实现这一目标的途径。基于生物数学模拟,我们设计了在维管束鞘细胞中表达核心碳固定酶 Rubisco 的拟南芥植物(Ru-BSC 植物),这是 C 植物的特征定位。这种修饰最初是有害的,迫使 Ru-BSC 植物进入适应度低谷,从而使以前无法获得的适应 C 光合作用的步骤通过适应性增强的突变变得可行。然后对诱变的 Ru-BSC 植物进行筛选,以提高光合作用,并有望通过进化适应 C 解剖结构和生物化学来应对施加的人工选择压力。