Suppr超能文献

视频对象分割的游戏化。

Gamifying Video Object Segmentation.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2017 Oct;39(10):1942-1958. doi: 10.1109/TPAMI.2016.2610973. Epub 2016 Sep 19.

Abstract

Video object segmentation can be considered as one of the most challenging computer vision problems. Indeed, so far, no existing solution is able to effectively deal with the peculiarities of real-world videos, especially in cases of articulated motion and object occlusions; limitations that appear more evident when we compare the performance of automated methods with the human one. However, manually segmenting objects in videos is largely impractical as it requires a lot of time and concentration. To address this problem, in this paper we propose an interactive video object segmentation method, which exploits, on one hand, the capability of humans to identify correctly objects in visual scenes, and on the other hand, the collective human brainpower to solve challenging and large-scale tasks. In particular, our method relies on a game with a purpose to collect human inputs on object locations, followed by an accurate segmentation phase achieved by optimizing an energy function encoding spatial and temporal constraints between object regions as well as human-provided location priors. Performance analysis carried out on complex video benchmarks, and exploiting data provided by over 60 users, demonstrated that our method shows a better trade-off between annotation times and segmentation accuracy than interactive video annotation and automated video object segmentation approaches.

摘要

视频对象分割可以被认为是计算机视觉领域中最具挑战性的问题之一。事实上,到目前为止,还没有一种现有的解决方案能够有效地处理真实世界视频的特殊性,特别是在关节运动和物体遮挡的情况下;当我们将自动方法的性能与人类的性能进行比较时,这些限制就更加明显了。然而,手动对视频中的对象进行分割在实践中是不切实际的,因为它需要大量的时间和精力。为了解决这个问题,在本文中,我们提出了一种交互式视频对象分割方法,该方法一方面利用了人类在视觉场景中正确识别物体的能力,另一方面利用了人类集体的大脑能力来解决具有挑战性的大规模任务。具体来说,我们的方法依赖于一个具有特定目的的游戏,以收集关于对象位置的人类输入,然后通过优化一个能量函数来实现精确的分割阶段,该能量函数对对象区域之间的空间和时间约束以及人类提供的位置先验进行编码。在复杂的视频基准上进行的性能分析,并利用 60 多名用户提供的数据进行分析,表明我们的方法在注释时间和分割准确性之间的权衡优于交互式视频注释和自动视频对象分割方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验