Suppr超能文献

基于运动属性理解的无监督在线视频对象分割。

Unsupervised Online Video Object Segmentation With Motion Property Understanding.

出版信息

IEEE Trans Image Process. 2020;29:237-249. doi: 10.1109/TIP.2019.2930152. Epub 2019 Jul 26.

Abstract

Unsupervised video object segmentation aims to automatically segment moving objects over an unconstrained video without any user annotation. So far, only few unsupervised online methods have been reported in the literature, and their performance is still far from satisfactory because the complementary information from future frames cannot be processed under online setting. To solve this challenging problem, in this paper, we propose a novel unsupervised online video object segmentation (UOVOS) framework by construing the motion property to mean moving in concurrence with a generic object for segmented regions. By incorporating the salient motion detection and the object proposal, a pixel-wise fusion strategy is developed to effectively remove detection noises, such as dynamic background and stationary objects. Furthermore, by leveraging the obtained segmentation from immediately preceding frames, a forward propagation algorithm is employed to deal with unreliable motion detection and object proposals. Experimental results on several benchmark datasets demonstrate the efficacy of the proposed method. Compared to state-of-the-art unsupervised online segmentation algorithms, the proposed method achieves an absolute gain of 6.2%. Moreover, our method achieves better performance than the best unsupervised offline algorithm on the DAVIS-2016 benchmark dataset. Our code is available on the project website: https://www.github.com/visiontao/uovos.

摘要

无监督视频目标分割旨在在没有任何用户注释的情况下自动分割不受约束的视频中的运动对象。到目前为止,文献中仅报道了少数无监督在线方法,但其性能仍远不能令人满意,因为无法在在线设置下处理来自未来帧的补充信息。为了解决这个具有挑战性的问题,本文通过将运动属性构造成与分割区域中的通用对象同时移动,提出了一种新颖的无监督在线视频目标分割(UOVOS)框架。通过结合显著运动检测和目标提议,开发了一种像素级融合策略,以有效去除检测噪声,如动态背景和静止物体。此外,通过利用前一帧获得的分割结果,采用前向传播算法来处理不可靠的运动检测和目标提议。在几个基准数据集上的实验结果证明了所提出方法的有效性。与最先进的无监督在线分割算法相比,所提出的方法在 DAVIS-2016 基准数据集上的绝对增益为 6.2%。此外,与最佳的无监督离线算法相比,我们的方法在 DAVIS-2016 基准数据集上的性能更好。我们的代码可在项目网站上获得:https://www.github.com/visiontao/uovos。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验