Yang Hao, Ercius Peter, Nellist Peter D, Ophus Colin
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.
Ultramicroscopy. 2016 Dec;171:117-125. doi: 10.1016/j.ultramic.2016.09.002. Epub 2016 Sep 14.
The ability to image light elements in both crystalline and noncrystalline materials at near atomic resolution with an enhanced contrast is highly advantageous to understand the structure and properties of a wide range of beam sensitive materials including biological specimens and molecular hetero-structures. This requires the imaging system to have an efficient phase contrast transfer at both low and high spatial frequencies. In this work we introduce a new phase contrast imaging method in a scanning transmission electron microscope (STEM) using a pre-specimen phase plate in the probe forming aperture, combined with a fast pixelated detector to record diffraction patterns at every probe position, and phase reconstruction using ptychography. The phase plate significantly enhances the contrast transfer of low spatial frequency information, and ptychography maximizes the extraction of the phase information at all spatial frequencies. In addition, the STEM probe with the presence of the phase plate retains its atomic resolution, allowing simultaneous incoherent Z-contrast imaging to be obtained along with the ptychographic phase image. An experimental image of Au nanoparticles on a carbon support shows high contrast for both materials. Multislice image simulations of a DNA molecule shows the capability of imaging soft matter at low dose conditions, which implies potential applications of low dose imaging of a wide range of beam sensitive materials.
在近原子分辨率下对晶体和非晶体材料中的轻元素进行成像,并具有增强的对比度,这对于理解包括生物标本和分子异质结构在内的各种对电子束敏感材料的结构和性质非常有利。这要求成像系统在低空间频率和高空间频率下都具有高效的相衬传递。在这项工作中,我们在扫描透射电子显微镜(STEM)中引入了一种新的相衬成像方法,即在探针形成孔径中使用预样品相板,结合快速像素化探测器在每个探针位置记录衍射图案,并使用叠层成像术进行相位重建。相板显著增强了低空间频率信息的相衬传递,而叠层成像术则最大限度地提取了所有空间频率的相位信息。此外,带有相板的STEM探针保持了其原子分辨率,允许在获得叠层成像相位图像的同时获得非相干Z衬度成像。碳载体上金纳米颗粒的实验图像显示了两种材料都具有高对比度。DNA分子的多切片图像模拟显示了在低剂量条件下对软物质成像的能力,这意味着对各种对电子束敏感材料进行低剂量成像具有潜在应用。