Suppr超能文献

基于CoMFA和CoMSIA的一系列S-DABO衍生物作为抗HIV药物的3D-QSAR分析

3D-QSAR analysis of a series of S-DABO derivatives as anti-HIV agents by CoMFA and CoMSIA.

作者信息

Xu H R, Fu L, Zhan P, Liu X Y

机构信息

a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences, Shandong University , Ji'nan , Shandong , PR China.

出版信息

SAR QSAR Environ Res. 2016 Dec;27(12):999-1014. doi: 10.1080/1062936X.2016.1233580. Epub 2016 Sep 26.

Abstract

In this study, we retrieved a series of 59 dihydroalkylthio-benzyloxopyrimidine (S-DABO) derivatives, which is a class of highly potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) reported from published articles, and analysed them with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Statistically significant three-dimensional quantitative structure-activity relationship (3D-QSAR) models by CoMFA and CoMSIA were derived from a training set of 46 compounds on the basis of the rigid body alignment. Further, the predictive ability of the QSAR models was validated by a test set of 13 compounds. Based on the information derived from CoMFA and CoMSIA contour maps, we have identified some steric and electrostatic features for improving the activities of these inhibitors, and we validated the 3D-QSAR results by a molecular docking method. On the basis of the obtained results, we designed a new series of S-DABO derivatives with high activities. Therefore, this study could be utilized to design more potent S-DABO analogues as anti-HIV agents.

摘要

在本研究中,我们从已发表文章中检索了一系列59种二氢烷基硫代苄氧基嘧啶(S-DABO)衍生物,这是一类报道的高效HIV-1非核苷逆转录酶抑制剂(NNRTIs),并用比较分子场分析(CoMFA)和比较分子相似性指数分析(CoMSIA)对其进行分析。基于刚体比对,从46种化合物的训练集中得到了由CoMFA和CoMSIA得出的具有统计学意义的三维定量构效关系(3D-QSAR)模型。此外,通过13种化合物的测试集验证了QSAR模型的预测能力。基于从CoMFA和CoMSIA等高线图获得的信息,我们确定了一些用于提高这些抑制剂活性的空间和静电特征,并通过分子对接方法验证了3D-QSAR结果。基于所得结果,我们设计了一系列具有高活性的新型S-DABO衍生物。因此,本研究可用于设计更有效的S-DABO类似物作为抗HIV药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验