Suppr超能文献

HIV-1非核苷类逆转录酶抑制剂:基于比较分子场分析(CoMFA)和比较分子相似性指数分析(CoMSIA)研究的构效关系及先导化合物优化(1995 - 2016年)

HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: SAR and Lead Optimization Using CoMFA and CoMSIA Studies (1995-2016).

作者信息

Vanangamudi Murugesan, Poongavanam Vasanthanathan, Namasivayam Vigneshwaran

机构信息

Department of Medicinal and Pharmaceutical Chemistry, Sree Vidyanikethan College of Pharmacy, Tirupati, Andhra Pradesh - 517102, India.

Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.

出版信息

Curr Med Chem. 2017 Nov 17;24(34):3774-3812. doi: 10.2174/0929867324666170705122851.

Abstract

BACKGROUND

Design of inhibitors for HIV-1 reverse transcriptase inhibition (HIV-1 RT) is one of the successful chemotherapies for the treatment of HIV infection. Among the inhibitors available for HIV-1 RT, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have shown to be very promising and clinically approved drugs. However, the efficiency of many of these drugs has been reduced by the drug-resistant variants of HIV-1 RT. The aim of the current review is to provide a summary of lead optimization strategies from the 3D-QSARs studies on NNRTI class from the past 21 years (1995 to 2016).

METHODS

The conformation dependent-alignment based (CoMFA and CoMSIA) methods have been proven very successful ligand based strategy in the drug design. Here, CoMFA and CoMSIA studies reported for structurally distinct NNRTIs including thiazolobenzimidazole, dipyridodiazepinone, 1,1,3-trioxo [1,2,4]-thiadiazine, formimidoester disulfides, thiocarbamate, thiazolidinone derivatives, etc. have been discussed in detail. In addition, we explore the position of the functional groups that drive the protein-ligand interaction.

RESULTS

The structure-activity relationship (SAR) revealed from CoMFA and CoMSIA studies of these drug classes is not only in agreement with the structure-based method but also provides an efficient way of lead optimization. In addition to molecular docking experiments, protein-ligand interaction fingerprints were calculated in order to understand the common binding mode of NNRTI compounds.

CONCLUSION

Overall, this review enlightens the protein-ligand interactions with a detailed SAR discussion for chemotypes. Such discussion will help medicinal chemist to gain a better understanding for the design of novel and promising NNRTI candidates.

摘要

背景

设计用于抑制HIV-1逆转录酶(HIV-1 RT)的抑制剂是治疗HIV感染的成功化疗方法之一。在可用于HIV-1 RT的抑制剂中,非核苷类逆转录酶抑制剂(NNRTIs)已被证明是非常有前景且已获临床批准的药物。然而,许多此类药物的疗效已因HIV-1 RT的耐药变体而降低。本综述的目的是总结过去21年(1995年至2016年)对NNRTI类进行的3D-QSAR研究中的先导优化策略。

方法

基于构象依赖性比对的方法(CoMFA和CoMSIA)已被证明是药物设计中非常成功的基于配体的策略。在此,详细讨论了针对结构不同的NNRTIs(包括噻唑并苯并咪唑、二吡啶并二氮杂卓酮、1,1,3-三氧代[1,2,4]-噻二嗪、甲脒酯二硫化物、硫代氨基甲酸盐、噻唑烷酮衍生物等)报道的CoMFA和CoMSIA研究。此外,我们探究了驱动蛋白质-配体相互作用的官能团的位置。

结果

从这些药物类别的CoMFA和CoMSIA研究中揭示的构效关系(SAR)不仅与基于结构的方法一致,还提供了一种有效的先导优化方法。除了分子对接实验外,还计算了蛋白质-配体相互作用指纹图谱,以了解NNRTI化合物的共同结合模式。

结论

总体而言,本综述通过对化学型进行详细的SAR讨论,阐明了蛋白质-配体相互作用。此类讨论将有助于药物化学家更好地理解新型且有前景的NNRTI候选物的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验