Marze Nicholas A, Jeliazkov Jeliazko R, Roy Burman Shourya S, Boyken Scott E, DiMaio Frank, Gray Jeffrey J
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland.
T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
Proteins. 2017 Mar;85(3):479-486. doi: 10.1002/prot.25168. Epub 2016 Oct 24.
The 28th-35th rounds of the Critical Assessment of PRotein Interactions (CAPRI) served as a practical benchmark for our RosettaDock protein-protein docking protocols, highlighting strengths and weaknesses of the approach. We achieved acceptable or better quality models in three out of 11 targets. For the two α-repeat protein-green fluorescent protein (αrep-GFP) complexes, we used a novel ellipsoidal partial-global docking method (Ellipsoidal Dock) to generate models with 2.2 Å/1.5 Å interface RMSD, capturing 49%/42% of the native contacts, for the 7-/5-repeat αrep complexes. For the DNase-immunity protein complex, we used a new predictor of hydrogen-bonding networks, HBNet with Bridging Waters, to place individual water models at the complex interface; models were generated with 1.8 Å interface RMSD and 12% native water contacts recovered. The targets for which RosettaDock failed to create an acceptable model were typically difficult in general, as six had no acceptable models submitted by any CAPRI predictor. The UCH-L5-RPN13 and UCH-L5-INO80G de-ubiquitinating enzyme-inhibitor complexes comprised inhibitors undergoing significant structural changes upon binding, with the partners being highly interwoven in the docked complexes. Our failure to predict the nucleosome-enzyme complex in Target 95 was largely due to tight constraints we placed on our model based on sparse biochemical data suggesting two specific cross-interface interactions, preventing the correct structure from being sampled. While RosettaDock's three successes show that it is a state-of-the-art docking method, the difficulties with highly flexible and multi-domain complexes highlight the need for better flexible docking and domain-assembly methods. Proteins 2017; 85:479-486. © 2016 Wiley Periodicals, Inc.
蛋白质相互作用关键评估(CAPRI)的第28 - 35轮作为我们RosettaDock蛋白质 - 蛋白质对接协议的实际基准,突出了该方法的优点和缺点。在11个靶标中,我们有3个获得了可接受或质量更好的模型。对于两个α - 重复蛋白 - 绿色荧光蛋白(αrep - GFP)复合物,我们使用了一种新颖的椭球部分 - 全局对接方法(椭球对接),为7 - / 5 - 重复αrep复合物生成了界面RMSD为2.2 Å / 1.5 Å的模型,捕获了49% / 42%的天然接触。对于DNA酶 - 免疫蛋白复合物,我们使用了一种新的氢键网络预测器HBNet并结合桥连水,在复合物界面处放置单个水模型;生成的模型界面RMSD为1.8 Å,恢复了12%的天然水接触。RosettaDock未能创建可接受模型的靶标通常总体上都很困难,因为有6个靶标没有任何CAPRI预测器提交的可接受模型。UCH - L5 - RPN13和UCH - L5 - INO80G去泛素化酶 - 抑制剂复合物中的抑制剂在结合时会发生显著的结构变化,其伴侣在对接复合物中高度交织。我们未能预测靶标95中的核小体 - 酶复合物,主要是因为我们基于稀疏的生化数据对模型施加了严格的限制,这些数据表明存在两种特定的跨界面相互作用,从而阻止了对正确结构的采样。虽然RosettaDock的三次成功表明它是一种先进的对接方法,但处理高度灵活和多结构域复合物时遇到的困难凸显了对更好的灵活对接和结构域组装方法的需求。《蛋白质》2017年;85:479 - 486。© 2016威利期刊公司