Suppr超能文献

在CAPRI第28 - 35轮中使用RosettaDock对长方形蛋白质和水介导界面进行建模。

Modeling oblong proteins and water-mediated interfaces with RosettaDock in CAPRI rounds 28-35.

作者信息

Marze Nicholas A, Jeliazkov Jeliazko R, Roy Burman Shourya S, Boyken Scott E, DiMaio Frank, Gray Jeffrey J

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland.

T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.

出版信息

Proteins. 2017 Mar;85(3):479-486. doi: 10.1002/prot.25168. Epub 2016 Oct 24.

Abstract

The 28th-35th rounds of the Critical Assessment of PRotein Interactions (CAPRI) served as a practical benchmark for our RosettaDock protein-protein docking protocols, highlighting strengths and weaknesses of the approach. We achieved acceptable or better quality models in three out of 11 targets. For the two α-repeat protein-green fluorescent protein (αrep-GFP) complexes, we used a novel ellipsoidal partial-global docking method (Ellipsoidal Dock) to generate models with 2.2 Å/1.5 Å interface RMSD, capturing 49%/42% of the native contacts, for the 7-/5-repeat αrep complexes. For the DNase-immunity protein complex, we used a new predictor of hydrogen-bonding networks, HBNet with Bridging Waters, to place individual water models at the complex interface; models were generated with 1.8 Å interface RMSD and 12% native water contacts recovered. The targets for which RosettaDock failed to create an acceptable model were typically difficult in general, as six had no acceptable models submitted by any CAPRI predictor. The UCH-L5-RPN13 and UCH-L5-INO80G de-ubiquitinating enzyme-inhibitor complexes comprised inhibitors undergoing significant structural changes upon binding, with the partners being highly interwoven in the docked complexes. Our failure to predict the nucleosome-enzyme complex in Target 95 was largely due to tight constraints we placed on our model based on sparse biochemical data suggesting two specific cross-interface interactions, preventing the correct structure from being sampled. While RosettaDock's three successes show that it is a state-of-the-art docking method, the difficulties with highly flexible and multi-domain complexes highlight the need for better flexible docking and domain-assembly methods. Proteins 2017; 85:479-486. © 2016 Wiley Periodicals, Inc.

摘要

蛋白质相互作用关键评估(CAPRI)的第28 - 35轮作为我们RosettaDock蛋白质 - 蛋白质对接协议的实际基准,突出了该方法的优点和缺点。在11个靶标中,我们有3个获得了可接受或质量更好的模型。对于两个α - 重复蛋白 - 绿色荧光蛋白(αrep - GFP)复合物,我们使用了一种新颖的椭球部分 - 全局对接方法(椭球对接),为7 - / 5 - 重复αrep复合物生成了界面RMSD为2.2 Å / 1.5 Å的模型,捕获了49% / 42%的天然接触。对于DNA酶 - 免疫蛋白复合物,我们使用了一种新的氢键网络预测器HBNet并结合桥连水,在复合物界面处放置单个水模型;生成的模型界面RMSD为1.8 Å,恢复了12%的天然水接触。RosettaDock未能创建可接受模型的靶标通常总体上都很困难,因为有6个靶标没有任何CAPRI预测器提交的可接受模型。UCH - L5 - RPN13和UCH - L5 - INO80G去泛素化酶 - 抑制剂复合物中的抑制剂在结合时会发生显著的结构变化,其伴侣在对接复合物中高度交织。我们未能预测靶标95中的核小体 - 酶复合物,主要是因为我们基于稀疏的生化数据对模型施加了严格的限制,这些数据表明存在两种特定的跨界面相互作用,从而阻止了对正确结构的采样。虽然RosettaDock的三次成功表明它是一种先进的对接方法,但处理高度灵活和多结构域复合物时遇到的困难凸显了对更好的灵活对接和结构域组装方法的需求。《蛋白质》2017年;85:479 - 486。© 2016威利期刊公司

相似文献

10
Modeling complexes of modeled proteins.模拟蛋白质复合物的建模。
Proteins. 2017 Mar;85(3):470-478. doi: 10.1002/prot.25183. Epub 2016 Oct 24.

引用本文的文献

6
Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design.利用 Rosetta 进行免疫建模:抗体和抗原设计方法。
Biochemistry. 2021 Mar 23;60(11):825-846. doi: 10.1021/acs.biochem.0c00912. Epub 2021 Mar 11.
9

本文引用的文献

2
Pushing the Backbone in Protein-Protein Docking.推动蛋白质-蛋白质对接中的主干结构
Structure. 2016 Oct 4;24(10):1821-1829. doi: 10.1016/j.str.2016.06.025. Epub 2016 Aug 25.
3
Comparative Protein Structure Modeling Using MODELLER.使用MODELLER进行比较蛋白质结构建模。
Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37. doi: 10.1002/cpbi.3.
6
Structure of the secretion domain of HxuA from Haemophilus influenzae.流感嗜血杆菌HxuA分泌结构域的结构
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Dec;69(Pt 12):1322-7. doi: 10.1107/S174430911302962X. Epub 2013 Nov 28.
8
How good is automated protein docking?自动化蛋白质对接的效果如何?
Proteins. 2013 Dec;81(12):2159-66. doi: 10.1002/prot.24403. Epub 2013 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验