Patel Mayurbhai R, Kozuch Stephen D, Cultrara Christopher N, Yadav Reeta, Huang Suiying, Samuni Uri, Koren John, Chiosis Gabriela, Sabatino David
Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States.
Department of Chemistry and Biochemistry, Seton Hall University , South Orange, New Jersey 07079, United States.
Nano Lett. 2016 Oct 12;16(10):6099-6108. doi: 10.1021/acs.nanolett.6b02274. Epub 2016 Oct 3.
The emerging field of RNA nanotechnology has been used to design well-programmed, self-assembled nanostructures for applications in chemistry, biology, and medicine. At the forefront of its utility in cancer is the unrestricted ability to self-assemble multiple siRNAs within a single nanostructure formulation for the RNAi screening of a wide range of oncogenes while potentiating the gene therapy of malignant tumors. In our RNAi nanotechnology approach, V- and Y-shape RNA templates were designed and constructed for the self-assembly of discrete, higher-ordered siRNA nanostructures targeting the oncogenic glucose regulated chaperones. The GRP78-targeting siRNAs self-assembled into genetically encoded spheres, triangles, squares, pentagons and hexagons of discrete sizes and shapes according to TEM imaging. Furthermore, gel electrophoresis, thermal denaturation, and CD spectroscopy validated the prerequisite siRNA hybrids for their RNAi application. In a 24 sample siRNA screen conducted within the AN3CA endometrial cancer cells known to overexpress oncogenic GRP78 activity, the self-assembled siRNAs targeting multiple sites of GRP78 expression demonstrated more potent and long-lasting anticancer activity relative to their linear controls. Extending the scope of our RNAi screening approach, the self-assembled siRNA hybrids (5 nM) targeting of GRP-75, 78, and 94 resulted in significant (50-95%) knockdown of the glucose regulated chaperones, which led to synergistic effects in tumor cell cycle arrest (50-80%) and death (50-60%) within endometrial (AN3CA), cervical (HeLa), and breast (MDA-MB-231) cancer cell lines. Interestingly, a nontumorigenic lung (MRC5) cell line displaying normal glucose regulated chaperone levels was found to tolerate siRNA treatment and demonstrated less toxicity (5-20%) relative to the cancer cells that were found to be addicted to glucose regulated chaperones. These remarkable self-assembled siRNA nanostructures may thus encompass a new class of potent siRNAs that may be useful in screening important oncogene targets while improving siRNA therapeutic efficacy and specificity in cancer.
新兴的RNA纳米技术领域已被用于设计程序良好、自组装的纳米结构,以应用于化学、生物学和医学领域。其在癌症应用的前沿是能够在单一纳米结构制剂中无限制地自组装多个小干扰RNA(siRNA),用于对多种癌基因进行RNA干扰(RNAi)筛选,同时增强恶性肿瘤的基因治疗效果。在我们的RNAi纳米技术方法中,设计并构建了V形和Y形RNA模板,用于自组装针对致癌性葡萄糖调节伴侣蛋白的离散、高阶siRNA纳米结构。根据透射电子显微镜(TEM)成像,靶向葡萄糖调节蛋白78(GRP78)的siRNA自组装成具有不同大小和形状的基因编码球体、三角形、正方形、五边形和六边形。此外,凝胶电泳、热变性和圆二色光谱(CD光谱)验证了用于RNAi应用的前提条件siRNA杂交体。在已知过表达致癌性GRP78活性的人子宫内膜癌细胞系AN3CA中进行的24个样本的siRNA筛选中,靶向GRP78表达多个位点的自组装siRNA相对于其线性对照表现出更强且持久的抗癌活性。扩展我们的RNAi筛选方法的范围,靶向GRP-75、78和94的自组装siRNA杂交体(5 nM)导致葡萄糖调节伴侣蛋白显著(50-95%)敲低,这在内膜癌(AN3CA)、宫颈癌(HeLa)和乳腺癌(MDA-MB-231)细胞系中导致肿瘤细胞周期阻滞(50-80%)和死亡(50-60%)的协同效应。有趣的是,发现显示正常葡萄糖调节伴侣蛋白水平的非致瘤性肺(MRC5)细胞系能够耐受siRNA处理,并且相对于发现对葡萄糖调节伴侣蛋白成瘾的癌细胞表现出较低的毒性(5-20%)。因此,这些引人注目的自组装siRNA纳米结构可能包含一类新的强效siRNA,可用于筛选重要的癌基因靶点,同时提高siRNA在癌症治疗中的疗效和特异性。