Harashima Hirofumi, Dissmeyer Nico, Hammann Philippe, Nomura Yuko, Kramer Katharina, Nakagami Hirofumi, Schnittger Arp
Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS - UPR2357, Université de Strasbourg, F-67084, Strasbourg, France.
Trinationales Institut für Pflanzenforschung, F-67084, Strasbourg Cedex, France.
BMC Plant Biol. 2016 Sep 26;16(1):209. doi: 10.1186/s12870-016-0900-7.
Modulation of protein activity by phosphorylation through kinases and subsequent de-phosphorylation by phosphatases is one of the most prominent cellular control mechanisms. Thus, identification of kinase substrates is pivotal for the understanding of many - if not all - molecular biological processes. Equally, the possibility to deliberately tune kinase activity is of great value to analyze the biological process controlled by a particular kinase.
Here we have applied a chemical genetic approach and generated an analog-sensitive version of CDKA;1, the central cell-cycle regulator in Arabidopsis and homolog of the yeast Cdc2/CDC28 kinases. This variant could largely rescue a cdka;1 mutant and is biochemically active, albeit less than the wild type. Applying bulky kinase inhibitors allowed the reduction of kinase activity in an organismic context in vivo and the modulation of plant growth. To isolate CDK substrates, we have adopted a two-dimensional differential gel electrophoresis strategy, and searched for proteins that showed mobility changes in fluorescently labeled extracts from plants expressing the analog-sensitive version of CDKA;1 with and without adding a bulky ATP variant. A pilot set of five proteins involved in a range of different processes could be confirmed in independent kinase assays to be phosphorylated by CDKA;1 approving the applicability of the here-developed method to identify substrates.
The here presented generation of an analog-sensitive CDKA;1 version is functional and represent a novel tool to modulate kinase activity in vivo and identify kinase substrates. Our here performed pilot screen led to the identification of CDK targets that link cell proliferation control to sugar metabolism, proline proteolysis, and glucosinolate production providing a hint how cell proliferation and growth are integrated with plant development and physiology.
通过激酶进行磷酸化以及随后通过磷酸酶进行去磷酸化来调节蛋白质活性是最显著的细胞控制机制之一。因此,鉴定激酶底物对于理解许多(即便不是所有)分子生物学过程至关重要。同样,有意调节激酶活性的可能性对于分析由特定激酶控制的生物学过程具有重要价值。
在此,我们应用了化学遗传学方法,生成了拟南芥中核心细胞周期调节因子CDKA;1的一个对类似物敏感的版本,它是酵母Cdc2/CDC28激酶的同源物。该变体在很大程度上能够挽救cdka;1突变体,并且具有生化活性,尽管活性低于野生型。应用庞大的激酶抑制剂能够在体内生物体环境中降低激酶活性并调节植物生长。为了分离CDK底物,我们采用了二维差异凝胶电泳策略,并在添加和不添加庞大ATP变体的情况下,从表达CDKA;1对类似物敏感版本的植物的荧光标记提取物中寻找显示迁移率变化的蛋白质。在独立的激酶测定中可以确认一组涉及一系列不同过程的五种蛋白质被CDKA;1磷酸化,这证实了此处开发的鉴定底物方法的适用性。
本文所展示的对类似物敏感的CDKA;1版本具有功能,代表了一种在体内调节激酶活性和鉴定激酶底物的新工具。我们在此进行的初步筛选导致鉴定出将细胞增殖控制与糖代谢、脯氨酸蛋白水解和芥子油苷产生联系起来的CDK靶标,这为细胞增殖和生长如何与植物发育和生理整合提供了线索。