Suppr超能文献

微重力诱导内质网应激和线粒体保护相关的蛋白质组学变化。

Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection.

作者信息

Feger Bryan J, Thompson J Will, Dubois Laura G, Kommaddi Reddy P, Foster Matthew W, Mishra Rajashree, Shenoy Sudha K, Shibata Yoichiro, Kidane Yared H, Moseley M Arthur, Carnell Lisa S, Bowles Dawn E

机构信息

Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.

Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Sci Rep. 2016 Sep 27;6:34091. doi: 10.1038/srep34091.

Abstract

On Earth, biological systems have evolved in response to environmental stressors, interactions dictated by physical forces that include gravity. The absence of gravity is an extreme stressor and the impact of its absence on biological systems is ill-defined. Astronauts who have spent extended time under conditions of minimal gravity (microgravity) experience an array of biological alterations, including perturbations in cardiovascular function. We hypothesized that physiological perturbations in cardiac function in microgravity may be a consequence of alterations in molecular and organellar dynamics within the cellular milieu of cardiomyocytes. We used a combination of mass spectrometry-based approaches to compare the relative abundance and turnover rates of 848 and 196 proteins, respectively, in rat neonatal cardiomyocytes exposed to simulated microgravity or normal gravity. Gene functional enrichment analysis of these data suggested that the protein content and function of the mitochondria, ribosomes, and endoplasmic reticulum were differentially modulated in microgravity. We confirmed experimentally that in microgravity protein synthesis was decreased while apoptosis, cell viability, and protein degradation were largely unaffected. These data support our conclusion that in microgravity cardiomyocytes attempt to maintain mitochondrial homeostasis at the expense of protein synthesis. The overall response to this stress may culminate in cardiac muscle atrophy.

摘要

在地球上,生物系统已经进化以应对环境压力源,这些压力源由包括重力在内的物理力所决定。失重是一种极端的压力源,其对生物系统的影响尚不明确。在微重力(极小重力)条件下度过较长时间的宇航员会经历一系列生物变化,包括心血管功能紊乱。我们推测,微重力下心脏功能的生理紊乱可能是心肌细胞细胞内环境中分子和细胞器动态变化的结果。我们使用基于质谱的方法组合,分别比较了暴露于模拟微重力或正常重力下的大鼠新生心肌细胞中848种和196种蛋白质的相对丰度和周转率。对这些数据的基因功能富集分析表明,微重力下线粒体、核糖体和内质网的蛋白质含量和功能受到不同程度的调节。我们通过实验证实,在微重力条件下蛋白质合成减少,而细胞凋亡、细胞活力和蛋白质降解基本不受影响。这些数据支持了我们的结论,即在微重力下心肌细胞试图以牺牲蛋白质合成来维持线粒体稳态。对这种压力的整体反应可能最终导致心肌萎缩。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e45/5037457/94e51ed854bf/srep34091-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验