Suppr超能文献

细菌第二信使环二鸟苷酸调控布鲁氏菌的致病机制并导致宿主免疫反应改变。

The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response.

作者信息

Khan Mike, Harms Jerome S, Marim Fernanda M, Armon Leah, Hall Cherisse L, Liu Yi-Ping, Banai Menachem, Oliveira Sergio C, Splitter Gary A, Smith Judith A

机构信息

Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA

Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, USA.

出版信息

Infect Immun. 2016 Nov 18;84(12):3458-3470. doi: 10.1128/IAI.00531-16. Print 2016 Dec.

Abstract

Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.

摘要

布鲁氏菌属是兼性胞内细菌,可引起布鲁氏菌病,这是一种慢性衰弱性疾病,对全球健康和繁荣产生重大影响。关于布鲁氏菌如何成功破坏免疫宿主细胞以及如何应对环境挑战,仍有许多有待了解之处。多种细菌利用原核第二信使环二鸟苷酸(c-di-GMP)来协调对不断变化的环境的反应。为了确定c-di-GMP在布鲁氏菌生理学以及塑造宿主-布鲁氏菌相互作用中的作用,我们利用了c-di-GMP调节酶缺失突变体。我们的结果表明,产生过量c-di-GMP的ΔbpdA磷酸二酯酶突变体在后期感染期间在体外和体内均表现出明显的减毒。尽管已知c-di-GMP可刺激先天性传感器STING,但令人惊讶的是,ΔbpdA突变体诱导的宿主免疫反应比野生型布鲁氏菌或低c-di-GMP鸟苷酸环化酶ΔcgsB突变体弱。蛋白质组学分析表明,c-di-GMP调节几个对毒力至关重要的过程,包括细胞壁和生物膜形成、营养获取以及IV型分泌系统。最后,ΔbpdA突变体表现出形态改变,并且对营养限制条件高度敏感。总之,我们的结果表明c-di-GMP在使布鲁氏菌成功应对压力和不断变化的环境以建立细胞内感染方面起着至关重要的作用。

相似文献

1
The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response.
Infect Immun. 2016 Nov 18;84(12):3458-3470. doi: 10.1128/IAI.00531-16. Print 2016 Dec.
2
Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes.
J Bacteriol. 2011 Oct;193(20):5683-91. doi: 10.1128/JB.00428-11. Epub 2011 Aug 19.
6
Cyclic Di-GMP Signaling Contributes to Pseudomonas aeruginosa-Mediated Catheter-Associated Urinary Tract Infection.
J Bacteriol. 2015 Jul 20;198(1):91-7. doi: 10.1128/JB.00410-15. Print 2016 Jan 1.
8
Targeting c-di-GMP Signaling, Biofilm Formation, and Bacterial Motility with Small Molecules.
Methods Mol Biol. 2017;1657:419-430. doi: 10.1007/978-1-4939-7240-1_31.
9
Cyclic-di-GMP regulation promotes survival of a slow-replicating subpopulation of intracellular Typhimurium.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6335-6340. doi: 10.1073/pnas.1901051116. Epub 2019 Mar 12.
10
Cyclic di-GMP Regulates the Type III Secretion System and Virulence in Bordetella bronchiseptica.
Infect Immun. 2022 Jun 16;90(6):e0010722. doi: 10.1128/iai.00107-22. Epub 2022 May 25.

引用本文的文献

1
Damage-associated molecular patterns (DAMPs) in diseases: implications for therapy.
Mol Biomed. 2025 Aug 29;6(1):60. doi: 10.1186/s43556-025-00305-3.
2
The role of cyclic di-GMP in biomaterial-associated infections caused by commensal Escherichia coli.
PLoS One. 2025 Aug 20;20(8):e0330229. doi: 10.1371/journal.pone.0330229. eCollection 2025.
4
STING-Pathway Inhibiting Nanoparticles (SPINs) as a Platform for Treatment of Inflammatory Diseases.
ACS Appl Bio Mater. 2024 Aug 19;7(8):4867-4878. doi: 10.1021/acsabm.3c01305. Epub 2024 Apr 2.
5
and biofilm dispersal from microplastics influenced by simulated human environment.
Front Microbiol. 2023 Oct 3;14:1236471. doi: 10.3389/fmicb.2023.1236471. eCollection 2023.
6
The Cell Envelope.
Annu Rev Microbiol. 2023 Sep 15;77:233-253. doi: 10.1146/annurev-micro-032521-013159. Epub 2023 Apr 27.
7
Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis.
Front Microbiol. 2022 Dec 22;13:1018165. doi: 10.3389/fmicb.2022.1018165. eCollection 2022.
8
Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy.
Signal Transduct Target Ther. 2022 Dec 23;7(1):394. doi: 10.1038/s41392-022-01252-z.
9
and Its Hidden Flagellar System.
Microorganisms. 2021 Dec 31;10(1):83. doi: 10.3390/microorganisms10010083.
10
STING Contributes to Host Defense Against Pneumonia Through Suppressing Necroptosis.
Front Immunol. 2021 May 31;12:636861. doi: 10.3389/fimmu.2021.636861. eCollection 2021.

本文引用的文献

1
RNA-seq reveals the critical role of CspA in regulating Brucella melitensis metabolism and virulence.
Sci China Life Sci. 2016 Apr;59(4):417-24. doi: 10.1007/s11427-015-4981-6. Epub 2016 Jan 6.
3
The STING controlled cytosolic-DNA activated innate immune pathway and microbial disease.
Microbes Infect. 2014 Dec;16(12):998-1001. doi: 10.1016/j.micinf.2014.10.002. Epub 2014 Oct 18.
5
Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ.
Mol Cell Proteomics. 2014 Sep;13(9):2513-26. doi: 10.1074/mcp.M113.031591. Epub 2014 Jun 17.
9
Cyclic di-GMP signalling and the regulation of bacterial virulence.
Microbiology (Reading). 2013 Jul;159(Pt 7):1286-1297. doi: 10.1099/mic.0.068189-0. Epub 2013 May 23.
10
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger.
Microbiol Mol Biol Rev. 2013 Mar;77(1):1-52. doi: 10.1128/MMBR.00043-12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验