Chomvong Kulika, Lin Eric, Blaisse Michael, Gillespie Abigail E, Cate Jamie H D
Department of Plant and Microbial Biology, University of California , Berkeley, California 94720, United States.
Department of Chemical and Biomolecular Engineering, University of California , Berkeley, California 94720, United States.
ACS Synth Biol. 2017 Feb 17;6(2):206-210. doi: 10.1021/acssynbio.6b00211. Epub 2016 Oct 3.
Cellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks only a single hydroxymethyl group relative to glucose, from binding to the CBP active site poses a spatial challenge for protein engineering, since simple steric occlusion cannot be used to block xylose binding without also preventing glucose binding. Using CRISPR-based chromosomal library selection, we identified a distal mutation in CBP, Y47H, responsible for improved cellobiose consumption in the presence of xylose. In silico analysis suggests this mutation may alter the conformation of the cellobiose phosphorylase dimer complex to reduce xylose binding to the active site. These results may aid in engineering carbohydrate phosphorylases for improved specificity in biofuel production, and also in the production of industrially important oligosaccharides.
纤维二糖磷酸化酶(CBP)可将植物生物质中丰富的纤维二糖分解为葡萄糖和葡萄糖1-磷酸。然而,同样在植物生物质中大量存在的戊糖木糖,既是一种混合抑制剂,也是逆反应的底物,限制了CBP的工业应用潜力。木糖相对于葡萄糖仅缺少一个羟甲基,要防止木糖与CBP活性位点结合,对蛋白质工程来说是一个空间挑战,因为不能仅通过简单的空间位阻来阻止木糖结合而不影响葡萄糖结合。利用基于CRISPR的染色体文库筛选,我们在CBP中鉴定出一个远端突变Y47H,该突变可在木糖存在的情况下提高纤维二糖的消耗。计算机模拟分析表明,此突变可能会改变纤维二糖磷酸化酶二聚体复合物的构象,从而减少木糖与活性位点的结合。这些结果可能有助于对碳水化合物磷酸化酶进行工程改造,以提高生物燃料生产中的特异性,也有助于工业上重要的寡糖的生产。