Suppr超能文献

可配置纳米流体二极管中离子电流整流的几何控制

Geometrical control of ionic current rectification in a configurable nanofluidic diode.

作者信息

Alibakhshi Mohammad Amin, Liu Binqi, Xu Zhiping, Duan Chuanhua

机构信息

Department of Mechanical Engineering, Boston University , Boston, Massachusetts 02215, USA.

School of Aerospace Engineering, Tsinghua University , Beijing 100084, China.

出版信息

Biomicrofluidics. 2016 Sep 7;10(5):054102. doi: 10.1063/1.4962272. eCollection 2016 Sep.

Abstract

Control of ionic current in a nanofluidic system and development of the elements analogous to electrical circuits have been the subject of theoretical and experimental investigations over the past decade. Here, we theoretically and experimentally explore a new technique for rectification of ionic current using asymmetric 2D nanochannels. These nanochannels have a rectangular cross section and a stepped structure consisting of a shallow and a deep side. Control of height and length of each side enables us to obtain optimum rectification at each ionic strength. A 1D model based on the Poisson-Nernst-Planck equation is derived and validated against the full 2D numerical solution, and a nondimensional concentration is presented as a function of nanochannel dimensions, surface charge, and the electrolyte concentration that summarizes the rectification behavior of such geometries. The rectification factor reaches a maximum at certain electrolyte concentration predicted by this nondimensional number and decays away from it. This method of fabrication and control of a nanofluidic diode does not require modification of the surface charge and facilitates the integration with lab-on-a-chip fluidic circuits. Experimental results obtained from the stepped nanochannels are in good agreement with the 1D theoretical model.

摘要

在过去十年中,纳米流体系统中离子电流的控制以及类似于电路元件的开发一直是理论和实验研究的主题。在此,我们通过理论和实验探索了一种使用不对称二维纳米通道整流离子电流的新技术。这些纳米通道具有矩形横截面和由浅侧和深侧组成的阶梯结构。控制每一侧的高度和长度使我们能够在每种离子强度下获得最佳整流效果。基于泊松-能斯特-普朗克方程推导了一维模型,并与完整的二维数值解进行了验证,还给出了无量纲浓度作为纳米通道尺寸、表面电荷和电解质浓度的函数,该函数总结了此类几何结构的整流行为。整流因子在由这个无量纲数预测的特定电解质浓度下达到最大值,并在远离该浓度时衰减。这种制造和控制纳米流体二极管的方法不需要修改表面电荷,并且便于与芯片实验室流体电路集成。从阶梯状纳米通道获得的实验结果与一维理论模型吻合良好。

相似文献

1
Geometrical control of ionic current rectification in a configurable nanofluidic diode.
Biomicrofluidics. 2016 Sep 7;10(5):054102. doi: 10.1063/1.4962272. eCollection 2016 Sep.
2
A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel.
J Colloid Interface Sci. 2021 Aug 15;596:54-63. doi: 10.1016/j.jcis.2021.03.126. Epub 2021 Mar 24.
3
Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification.
Anal Chim Acta. 2020 Jul 25;1122:48-60. doi: 10.1016/j.aca.2020.05.011. Epub 2020 May 5.
5
Proton-Gated Rectification Regimes in Nanofluidic Diodes Switched by Chemical Effectors.
Small. 2018 May;14(18):e1703144. doi: 10.1002/smll.201703144. Epub 2018 Feb 5.
6
Influence of salt valence on the rectification behavior of nanochannels.
J Colloid Interface Sci. 2018 Dec 1;531:483-492. doi: 10.1016/j.jcis.2018.07.012. Epub 2018 Jul 4.
7
Nanofluidic diode based on branched alumina nanochannels with tunable ionic rectification.
ACS Appl Mater Interfaces. 2013 Aug 28;5(16):7931-6. doi: 10.1021/am402004k. Epub 2013 Jul 23.
8
pH-reversed ionic current rectification displayed by conically shaped nanochannel without any modification.
Nanoscale. 2011 Sep 1;3(9):3767-73. doi: 10.1039/c1nr10434a. Epub 2011 Aug 8.
9
Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores.
J Colloid Interface Sci. 2009 Jan 15;329(2):376-83. doi: 10.1016/j.jcis.2008.10.012. Epub 2008 Nov 1.
10
Mechanism and performance of ionic diodes fabricated from 2D trapezoidal-shaped nanochannels.
Phys Chem Chem Phys. 2022 Aug 24;24(33):19927-19937. doi: 10.1039/d2cp03168j.

引用本文的文献

1
Nanoparticle-blockage-enabled rapid and reversible nanopore gating with tunable memory.
Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2200845119. doi: 10.1073/pnas.2200845119. Epub 2022 Jun 27.

本文引用的文献

1
Accurate measurement of liquid transport through nanoscale conduits.
Sci Rep. 2016 Apr 26;6:24936. doi: 10.1038/srep24936.
3
Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis.
ACS Nano. 2016 Mar 22;10(3):3214-3221. doi: 10.1021/acsnano.5b05211. Epub 2016 Feb 1.
5
Asymmetry-induced electric current rectification in permselective systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):033018. doi: 10.1103/PhysRevE.92.033018. Epub 2015 Sep 30.
6
Nanofluidic Diode for Simple Fluids without Moving Parts.
Phys Rev Lett. 2015 Sep 25;115(13):134503. doi: 10.1103/PhysRevLett.115.134503. Epub 2015 Sep 24.
7
Electroosmotic flow in nanofluidic channels.
Anal Chem. 2014 Nov 18;86(22):11174-80. doi: 10.1021/ac502596m. Epub 2014 Nov 3.
8
Microfluidic systems with ion-selective membranes.
Annu Rev Anal Chem (Palo Alto Calif). 2014;7:317-35. doi: 10.1146/annurev-anchem-071213-020155. Epub 2014 Apr 14.
9
Label-free electrical quantification of amplified nucleic acids through nanofluidic diodes.
Biosens Bioelectron. 2013 Dec 15;50:78-83. doi: 10.1016/j.bios.2013.06.013. Epub 2013 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验