Suppr超能文献

纳米颗粒阻塞助力快速可逆纳米孔门控及可调记忆功能。

Nanoparticle-blockage-enabled rapid and reversible nanopore gating with tunable memory.

机构信息

Department of Mechanical Engineering, Boston University, Boston, MA 02215.

Department of Biomedical Engineering, University of Texas at Austin, TX 78712.

出版信息

Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2200845119. doi: 10.1073/pnas.2200845119. Epub 2022 Jun 27.

Abstract

Gated protein channels act as rapid, reversible, and fully-closeable nanoscale valves to gate chemical transport across the cell membrane. Replicating or outperforming such a high-performance gating and valving function in artificial solid-state nanopores is considered an important yet unsolved challenge. Here we report a bioinspired rapid and reversible nanopore gating strategy based on controlled nanoparticle blockage. By using rigid or soft nanoparticles, we respectively achieve a trapping blockage gating mode with volatile memory where gating is realized by electrokinetically trapped nanoparticles near the pore and contact blockage gating modes with nonvolatile memory where gating is realized by a nanoparticle physically blocking the pore. This gating strategy can respond to an external voltage stimulus (∼200 mV) or pressure stimulus (∼1 atm) with response time down to milliseconds. In particular, when 1,2-diphytanoyl-sn-glycero-3-phosphocholine liposomes are used as the nanoparticles, the gating efficiency, defined as the extent of nanopore closing compared to the opening state, can reach 100%. We investigate the mechanisms for this nanoparticle-blockage-enabled nanopore gating and use it to demonstrate repeatable controlled chemical releasing via single nanopores. Because of the exceptional spatial and temporal control offered by this nanopore gating strategy, we expect it to find applications for drug delivery, biotic-abiotic interfacing, and neuromorphic computing.

摘要

门控蛋白通道作为快速、可逆且完全可关闭的纳米尺度阀门,控制着细胞膜的化学物质运输。在人工固态纳米孔中复制或超越这种高性能的门控和阀控功能被认为是一个重要但尚未解决的挑战。在这里,我们报告了一种基于控制纳米颗粒阻塞的仿生快速可逆纳米孔门控策略。通过使用刚性或软质纳米颗粒,我们分别实现了具有易失性存储的俘获阻塞门控模式,其中门控是通过在孔附近的电动捕获纳米颗粒来实现的,以及具有非易失性存储的接触阻塞门控模式,其中门控是通过纳米颗粒物理阻塞孔来实现的。这种门控策略可以对外加电压刺激(约 200 mV)或压力刺激(约 1 atm)做出响应,响应时间低至毫秒级。特别是,当 1,2-二植烷酰基-sn-甘油-3-磷酸胆碱脂质体用作纳米颗粒时,门控效率(定义为与打开状态相比纳米孔关闭的程度)可达到 100%。我们研究了这种基于纳米颗粒阻塞的纳米孔门控的机制,并利用它来演示通过单个纳米孔进行可重复的受控化学释放。由于这种纳米孔门控策略提供了出色的时空控制,我们预计它将在药物输送、生物-非生物界面以及神经形态计算等领域得到应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c9/9271175/8f69eaecfc67/pnas.2200845119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验