Suppr超能文献

多层螺旋CT表现为磨玻璃影的肺腺癌:生长模式和倍增时间的三维计算机辅助分析

Pulmonary adenocarcinomas presenting as ground-glass opacities on multidetector CT: three-dimensional computer-assisted analysis of growth pattern and doubling time.

作者信息

Borghesi Andrea, Farina Davide, Michelini Silvia, Ferrari Matteo, Benetti Diego, Fisogni Simona, Tironi Andrea, Maroldi Roberto

机构信息

Department of Radiology, University and Spedali Civili of Brescia, Italy.

出版信息

Diagn Interv Radiol. 2016 Nov-Dec;22(6):525-533. doi: 10.5152/dir.2016.16110.

Abstract

PURPOSE

We aimed to evaluate the growth pattern and doubling time (DT) of pulmonary adenocarcinomas exhibiting ground-glass opacities (GGOs) on multidetector computed tomography (CT).

METHODS

The growth pattern and DT of 22 pulmonary adenocarcinomas exhibiting GGOs were retrospectively analyzed using three-dimensional semiautomatic software. Analysis of each lesion was based on calculations of volume and mass changes and their respective DTs throughout CT follow-up. Three-dimensional segmentation was performed by a single radiologist on each CT scan. The same observer and another radiologist independently repeated the segmentation at the baseline and the last CT scan to determine the variability of the measurements. The relationships among DTs, histopathology, and initial CT features of the lesions were also analyzed.

RESULTS

Pulmonary adenocarcinomas presenting as GGOs exhibited different growth patterns: some lesions grew rapidly and some grew slowly, whereas others alternated between periods of growth, stability, or shrinkage. A significant increase in volume and mass that exceeded the coefficient of repeatability of interobserver variability was observed in 72.7% and 84.2% of GGOs, respectively. The volume-DTs and mass-DTs were heterogeneous throughout the follow-up CT scan (range, -4293 to 21928 and -3113 to 17020 days, respectively), and their intra- and interobserver variabilities were moderately high. The volume-DTs and mass-DTs were not correlated with the initial CT features of GGOs; however, they were significantly shorter in invasive adenocarcinomas (P = 0.002 and P = 0.001, respectively).

CONCLUSION

Pulmonary adenocarcinomas exhibiting GGOs show heterogeneous growth patterns with a trend toward a progressive increase in size. DTs may be useful for predicting tumor aggressiveness.

摘要

目的

我们旨在评估在多排螺旋计算机断层扫描(CT)上表现为磨玻璃影(GGO)的肺腺癌的生长模式和倍增时间(DT)。

方法

使用三维半自动软件对22例表现为GGO的肺腺癌的生长模式和DT进行回顾性分析。对每个病变的分析基于在整个CT随访过程中体积和质量变化及其各自DT的计算。由一名放射科医生对每次CT扫描进行三维分割。同一名观察者和另一名放射科医生在基线和最后一次CT扫描时独立重复分割,以确定测量的可变性。还分析了DT、组织病理学和病变初始CT特征之间的关系。

结果

表现为GGO的肺腺癌呈现不同的生长模式:一些病变生长迅速,一些生长缓慢,而另一些则在生长、稳定或缩小期之间交替。分别在72.7%和84.2%的GGO中观察到体积和质量的显著增加,超过了观察者间变异性的重复性系数。在整个随访CT扫描中,体积DT和质量DT是异质的(范围分别为-4293至21928天和-3113至17020天),其观察者内和观察者间变异性中等偏高。体积DT和质量DT与GGO的初始CT特征无关;然而,在浸润性腺癌中它们明显更短(分别为P = 0.002和P = 0.001)。

结论

表现为GGO的肺腺癌显示出异质的生长模式,有大小逐渐增加的趋势。DT可能有助于预测肿瘤的侵袭性。

相似文献

2
A dominant adenocarcinoma with multifocal ground glass lesions does not behave as advanced disease.
Ann Thorac Surg. 2013 Aug;96(2):411-8. doi: 10.1016/j.athoracsur.2013.04.048. Epub 2013 Jun 24.
6
Surgical Management of Multifocal Ground-Glass Opacities of the Lung: Correlation of Clinicopathologic and Radiologic Findings.
Thorac Cardiovasc Surg. 2017 Mar;65(2):142-149. doi: 10.1055/s-0036-1572437. Epub 2016 Feb 22.
9
Lung lesion doubling times: values and variability based on method of volume determination.
Clin Radiol. 2008 Jan;63(1):41-8. doi: 10.1016/j.crad.2007.07.011. Epub 2007 Oct 1.

引用本文的文献

1
Radiomics and deep learning methods for predicting the growth of subsolid nodules based on CT images.
Medicine (Baltimore). 2025 Aug 29;104(35):e44104. doi: 10.1097/MD.0000000000044104.
2
Prediction of the stage shift growth of early-stage lung adenocarcinomas by volume-doubling time.
Quant Imaging Med Surg. 2024 Jun 1;14(6):3983-3996. doi: 10.21037/qims-23-1759. Epub 2024 May 24.
3
4
The natural growth history of persistent pulmonary subsolid nodules: Radiology, genetics, and clinical management.
Front Oncol. 2022 Dec 8;12:1011712. doi: 10.3389/fonc.2022.1011712. eCollection 2022.
5
Primary Pulmonary Malignant Melanoma Presenting as Bilateral Multiple Subsolid Nodules: A Case Report.
Taehan Yongsang Uihakhoe Chi. 2022 Mar;83(2):387-393. doi: 10.3348/jksr.2021.0094. Epub 2021 Dec 11.
10
The Growth Trend Predictions in Pulmonary Ground Glass Nodules Based on Radiomic CT Features.
Front Oncol. 2020 Oct 20;10:580809. doi: 10.3389/fonc.2020.580809. eCollection 2020.

本文引用的文献

1
British Thoracic Society guidelines for the investigation and management of pulmonary nodules.
Thorax. 2015 Aug;70 Suppl 2:ii1-ii54. doi: 10.1136/thoraxjnl-2015-207168.
2
Interscan variation of semi-automated volumetry of subsolid pulmonary nodules.
Eur Radiol. 2015 Apr;25(4):1040-7. doi: 10.1007/s00330-014-3478-1. Epub 2014 Nov 21.
3
Volume and mass doubling times of persistent pulmonary subsolid nodules detected in patients without known malignancy.
Radiology. 2014 Oct;273(1):276-84. doi: 10.1148/radiol.14132324. Epub 2014 Jun 14.
4
Pulmonary subsolid nodules: what radiologists need to know about the imaging features and management strategy.
Diagn Interv Radiol. 2014 Jan-Feb;20(1):47-57. doi: 10.5152/dir.2013.13223.
5
Computer-aided segmentation and volumetry of artificial ground-glass nodules at chest CT.
AJR Am J Roentgenol. 2013 Aug;201(2):295-300. doi: 10.2214/AJR.12.9640.
7
The long-term course of ground-glass opacities detected on thin-section computed tomography.
Respir Med. 2013 Jun;107(6):904-10. doi: 10.1016/j.rmed.2013.02.014. Epub 2013 Mar 17.
8
How long should small lung lesions of ground-glass opacity be followed?
J Thorac Oncol. 2013 Mar;8(3):309-14. doi: 10.1097/JTO.0b013e31827e2435.
9
Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society.
Radiology. 2013 Jan;266(1):304-17. doi: 10.1148/radiol.12120628. Epub 2012 Oct 15.
10
Natural history of pure ground-glass opacity lung nodules detected by low-dose CT scan.
Chest. 2013 Jan;143(1):172-178. doi: 10.1378/chest.11-2501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验