Nguyen Anh T N, Vecchio Elizabeth A, Thomas Trayder, Nguyen Toan D, Aurelio Luigi, Scammells Peter J, White Paul J, Sexton Patrick M, Gregory Karen J, May Lauren T, Christopoulos Arthur
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia.
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
Mol Pharmacol. 2016 Dec;90(6):715-725. doi: 10.1124/mol.116.105015. Epub 2016 Sep 28.
Allosteric modulation of adenosine A1 receptors (A1ARs) offers a novel therapeutic approach for the treatment of numerous central and peripheral disorders; however, despite decades of research, there is a relative paucity of structural information regarding the A1AR allosteric site and mechanisms governing cooperativity with orthosteric ligands. We combined alanine-scanning mutagenesis of the A1AR second extracellular loop (ECL2) with radioligand binding and functional interaction assays to quantify effects on allosteric ligand affinity, cooperativity, and efficacy. Docking and molecular dynamics (MD) simulations were performed using an A1AR homology model based on an agonist-bound A2AAR structure. Substitution of E172ECL2 for alanine reduced the affinity of the allosteric modulators PD81723 and VCP171 for the unoccupied A1AR. Residues involved in cooperativity with the orthosteric agonist NECA were different in PD81723 and VCP171; positive cooperativity between PD81723 and NECA was reduced on alanine substitution of a number of ECL2 residues, including E170ECL2 and K173ECL2, whereas mutation of W146ECL2 and W156ECL2 decreased VCP171 cooperativity with NECA. Molecular modeling localized a likely allosteric pocket for both modulators to an extracellular vestibule that overlaps with a region used by orthosteric ligands as they transit into the canonical A1AR orthosteric site. MD simulations confirmed a key interaction between E172ECL2 and both modulators. Bound PD81723 is flanked by another residue, E170ECL2, which forms hydrogen bonds with adjacent K168ECL2 and K173ECL2. Collectively, our data suggest E172ECL2 is a key allosteric ligand-binding determinant, whereas hydrogen-bonding networks within the extracellular vestibule may facilitate the transmission of cooperativity between orthosteric and allosteric sites.
腺苷A1受体(A1ARs)的变构调节为治疗多种中枢和外周疾病提供了一种新的治疗方法;然而,尽管经过了数十年的研究,但关于A1AR变构位点以及与正构配体协同作用机制的结构信息相对较少。我们将A1AR第二细胞外环(ECL2)的丙氨酸扫描诱变与放射性配体结合和功能相互作用测定相结合,以量化对变构配体亲和力、协同性和效力的影响。使用基于激动剂结合的A2AAR结构的A1AR同源模型进行对接和分子动力学(MD)模拟。将ECL2的E172替换为丙氨酸降低了变构调节剂PD81723和VCP171对未占据A1AR的亲和力。在PD81723和VCP171中,与正构激动剂NECA协同作用的残基不同;在包括ECL2的E170和K173在内的多个ECL2残基被丙氨酸取代后,PD81723和NECA之间的正协同性降低,而ECL2的W146和W156突变降低了VCP171与NECA的协同性。分子建模将两种调节剂可能的变构口袋定位到一个细胞外前庭,该前庭与正构配体进入经典A1AR正构位点时所使用的区域重叠。MD模拟证实了ECL2的E172与两种调节剂之间的关键相互作用。结合的PD81723两侧是另一个残基ECL2的E170,它与相邻的K168ECL2和K173ECL2形成氢键。总体而言,我们的数据表明ECL2的E172是变构配体结合的关键决定因素,而细胞外前庭内的氢键网络可能促进正构和变构位点之间协同性的传递。