Suppr超能文献

腺苷 A1 受体的第二个细胞外环介导变构增强剂的活性。

The second extracellular loop of the adenosine A1 receptor mediates activity of allosteric enhancers.

机构信息

Department of Pharmacology (D.P.K.), Department of Molecular Physiology and Biological Physics (S.A.L., M.P., H.F., M.C., R.F., M.Y.), Cardiovascular Research Center (M.A.M., R.F., M.Y.), Center for Membrane Biology (M.Y.), and Department of Medicine, Division of Cardiovascular Medicine (M.Y.), University of Virginia School of Medicine, Charlottesville, Virginia; the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (F.M.M., R.A.); and the La Jolla Institute for Allergy and Immunology (J.L.), La Jolla, California.

出版信息

Mol Pharmacol. 2014 Feb;85(2):301-9. doi: 10.1124/mol.113.088682. Epub 2013 Nov 11.

Abstract

Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists.

摘要

变构增强剂可放大腺苷 A1 受体的信号转导,其作用机制为变构调节。变构增强剂是一种有吸引力的药物候选物,因为它们的活性需要占据变构结合位点的配体是激动剂,这使得变构增强剂对产生腺苷的应激或受损组织具有特异性。为了探索变构增强剂的作用机制,我们检测了它们对几种 A1 受体构建体的作用,包括(1)物种变体,(2)物种嵌合体,(3)丙氨酸扫描突变体,和(4)定点突变体。将这些发现与 A1 受体的同源建模和变构增强剂文库的计算机筛选相结合。已知结合的变构增强剂的结合模式与已知的构效关系相关,这表明这些变构增强剂结合到由第二个细胞外环形成的口袋中,由 S150 和 M162 残基侧翼。我们提出了一个模型,其中这个前庭控制着变构结合位点的激动剂的进入和流出,并且激动剂结合引发构象变化,从而使变构增强剂结合。该模型为以下观察结果提供了一种机制:变构增强剂可减缓变构结合位点的激动剂的解离,但不减缓拮抗剂的解离。

相似文献

引用本文的文献

2
Small molecule allosteric modulation of the adenosine A receptor.小分子变构调节腺苷 A 受体。
Front Endocrinol (Lausanne). 2023 Jun 26;14:1184360. doi: 10.3389/fendo.2023.1184360. eCollection 2023.
3
Deciphering the Agonist Binding Mechanism to the Adenosine A1 Receptor.解析激动剂与腺苷A1受体的结合机制。
ACS Pharmacol Transl Sci. 2021 Jan 21;4(1):314-326. doi: 10.1021/acsptsci.0c00195. eCollection 2021 Feb 12.

本文引用的文献

1
Molecular signatures of G-protein-coupled receptors.G 蛋白偶联受体的分子特征。
Nature. 2013 Feb 14;494(7436):185-94. doi: 10.1038/nature11896.
2
Regulation of G protein-coupled receptors by allosteric ligands.变构配体对 G 蛋白偶联受体的调节。
ACS Chem Neurosci. 2013 Apr 17;4(4):527-34. doi: 10.1021/cn400005t. Epub 2013 Feb 21.
3
A pharmacological organization of G protein-coupled receptors.G 蛋白偶联受体的药理学组织。
Nat Methods. 2013 Feb;10(2):140-6. doi: 10.1038/nmeth.2324. Epub 2013 Jan 6.
4
Emerging opportunities for allosteric modulation of G-protein coupled receptors.变构调节 G 蛋白偶联受体的新机遇。
Biochem Pharmacol. 2013 Jan 15;85(2):153-62. doi: 10.1016/j.bcp.2012.09.001. Epub 2012 Sep 11.
10
Ligand-guided receptor optimization.配体导向的受体优化
Methods Mol Biol. 2012;857:189-205. doi: 10.1007/978-1-61779-588-6_8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验