Suppr超能文献

用于增强生物整合的氧化锆直接硅烷化

Direct silanization of zirconia for increased biointegration.

作者信息

Caravaca Carlos, Shi Liu, Balvay Sandra, Rivory Pascaline, Laurenceau Emmanuelle, Chevolot Yann, Hartmann Daniel, Gremillard Laurent, Chevalier Jérôme

机构信息

Université de Lyon, INSA de Lyon, Université Claude Bernard Lyon 1 - UMR CNRS 5510 MATEIS, 7, Avenue Jean Capelle, 69621 Villeurbanne cedex, France.

Université de Lyon, École Centrale de Lyon, Institut des Nanotechnologies de Lyon (INL) - UMR CNRS 5270, 36 Avenue Guy de Collongue, 69134 Écully cedex, France.

出版信息

Acta Biomater. 2016 Dec;46:323-335. doi: 10.1016/j.actbio.2016.09.034. Epub 2016 Sep 26.

Abstract

UNLABELLED

High-performance bioinert ceramics such as zirconia have been used for biomedical devices since the early seventies. In order to promote osseointegration, the historical solution has been to increase the specific surface of the implant through roughness. Nevertheless these treatments on ceramics may create defects at the surface, exposing the material to higher chances of early failure. In zirconia, such treatments may also affect the stability of the surface. More recently, the interest of improving osseointegration of implants has moved the research focus towards the actual chemistry of the surface. Inspired by this, we have adapted the current knowledge and techniques of silica functionalization and applied it to successfully introduce 3-aminopropyldimethylethoxy silane (APDMES) directly on the surface of zirconia (3Y-TZP). We used plasma of oxygen to clean the surface and promote hydroxylation of the surface to increase silane density. The samples were extensively characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle, mechanically tested and its cytotoxicity was evaluated through cell adhesion and proliferation tests. Additionally, aging was studied to discard negative effects of the treatment on the stability of the tetragonal phase. No adverse effect was found on the mechanical response of treated samples. In addition, plasma-treated samples exhibited an unexpectedly higher resistance to aging. Finally, silane density was 35% lower than the one reported in literature for silica. However cells displayed a qualitatively higher spreading in opposition to the rounder appearance of cells on untreated zirconia. These results lay the foundations for the next generation of zirconia implants with biologically friendlier surfaces.

STATEMENT OF SIGNIFICANCE

The use of zirconia-based ceramics in biomedical devices is broad and well accepted, especially in dental implants. However, they do not bond naturally to bone, therefore to ensure fixation surgeons typically rely on roughness at different scales, or on cements. Alternatively in this work we present a new perspective of surface modification through chemistry to enhance the interaction between surface and biological environment, without the downsides of roughness. This surface treatment is proposed for zirconia, which allowed a direct silanization of its surface and a higher cell attachment. The results of this research may open the possibility for the next generation of bioinert ceramic implants with more advanced tailored surfaces for increased osseointegration.

摘要

未标注

自20世纪70年代初以来,氧化锆等高性能生物惰性陶瓷已被用于生物医学设备。为了促进骨整合,传统的解决方法是通过增加粗糙度来提高植入物的比表面积。然而,对陶瓷进行的这些处理可能会在表面产生缺陷,使材料面临更高的早期失效风险。在氧化锆中,这种处理也可能影响表面的稳定性。最近,提高植入物骨整合能力的研究兴趣已将研究重点转向表面的实际化学性质。受此启发,我们借鉴了当前二氧化硅功能化的知识和技术,并将其成功应用于直接在氧化锆(3Y-TZP)表面引入3-氨丙基二甲基乙氧基硅烷(APDMES)。我们使用氧气等离子体清洁表面并促进表面羟基化以增加硅烷密度。通过X射线光电子能谱(XPS)和接触角对样品进行了广泛表征,进行了机械测试,并通过细胞粘附和增殖试验评估了其细胞毒性。此外,还研究了老化情况,以消除处理对四方相稳定性的负面影响。未发现处理后的样品在力学响应方面有不利影响。此外,经等离子体处理的样品表现出出乎意料的更高的抗老化能力。最后,硅烷密度比文献中报道的二氧化硅的密度低35%。然而,与未处理的氧化锆上更圆润的细胞外观相反,细胞显示出定性上更高的铺展性。这些结果为具有生物友好性更高表面的下一代氧化锆植入物奠定了基础。

意义声明

基于氧化锆的陶瓷在生物医学设备中的应用广泛且被广泛接受,尤其是在牙科植入物中。然而,它们不会自然地与骨结合,因此为了确保固定,外科医生通常依赖不同尺度的粗糙度或骨水泥。在这项工作中,我们提出了一种通过化学方法进行表面改性的新视角,以增强表面与生物环境之间的相互作用,而不会有粗糙度带来的缺点。这种表面处理方法是针对氧化锆提出的,它允许对其表面进行直接硅烷化并实现更高的细胞附着。这项研究的结果可能为下一代具有更先进定制表面以提高骨整合能力的生物惰性陶瓷植入物开辟可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验