Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
Acta Odontol Scand. 2012 Sep;70(5):405-13. doi: 10.3109/00016357.2011.630014. Epub 2012 Mar 9.
To study in vitro the effect of two cross-linking silanes, bis-1,2-(triethoxysilyl)ethane and bis[3-(trimethoxysilyl)propyl]amine, blended with an organofunctional silane coupling agent, (3-acryloxypropyl)trimethoxysilane, on the shear bond strength between resin-composite cement and silicatized zirconia after dry storage and thermocycling.
Six tested groups of 90 samples of yttria stabilized zirconia were used for sample preparation. The surfaces of the zirconia were silica-coated. 3M ESPE Sil silane was used as a control. Solutions of (3-acryloxypropyl)trimethoxysilane with cross-linking silanes bis-1,2-(triethoxysilyl)ethane and bis[3-(trimethoxysilyl)propyl]amine were applied onto the surface of silicatized zirconia. 3M ESPE RelyX resin-composite cement was bonded onto the silicatized and silanized zirconia surface and light-cured. Three groups were tested under dry condition and the other three groups were tested for thermocycling. The shear bond strength was measured using a materials testing instrument. Group mean shear bond strengths were analysed by ANOVA at a significant level of p < 0.05. The zirconia surface composition was analysed by X-ray Photoelectron Spectroscopy.
The highest shear bond strength was 11.8 ± 3.5 MPa for (3-acryloxypropyl)trimethoxysilane blended with bis-1,2-(triethoxysilyl)ethane (dry storage). There was a significant difference between mean shear bond strength values for (3-acryloxypropyl)trimethoxysilane blended with two cross-linking silanes, bis-1,2-(triethoxysilyl)ethane and bis[3-(trimethoxysilyl)propyl]amine, after thermocycling (p < 3.9 × 10(-8)). Various surface treatments of zirconia influenced the surface roughness (p < 4.6 × 10(-6)). The chemical composition analysis showed there was an increase in silicon and oxygen content after sandblasting.
The results suggest that the combination of functional (3-acryloxypropyl)trimethoxysilane with cross-linking bis[3-(trimethoxysilyl)propyl]amine showed superior hydrolytic stability than with bis-1,2-(triethoxysilyl)ethane.
体外研究两种交联硅烷,双-[1,2-(三乙氧基硅基)]乙烷和双[3-(三甲氧基硅基)丙基]胺,与有机官能硅烷偶联剂[3-丙烯酰氧基丙基]三甲氧基硅烷混合,对干燥储存和热循环后树脂复合水泥与硅化氧化锆之间的剪切结合强度的影响。
使用 90 个 Y 稳定氧化锆样本的 6 个测试组进行样本制备。氧化锆的表面涂覆有二氧化硅。3M ESPE Sil 硅烷用作对照。将交联硅烷双-[1,2-(三乙氧基硅基)]乙烷和双[3-(三甲氧基硅基)丙基]胺的[3-丙烯酰氧基丙基]三甲氧基硅烷溶液施加到硅化氧化锆的表面。将 3M ESPE RelyX 树脂复合水泥粘合到硅化和硅烷化氧化锆表面并进行光固化。三组在干燥条件下进行测试,另外三组进行热循环测试。使用材料测试仪器测量剪切结合强度。使用方差分析在 p < 0.05 的显著水平分析组平均剪切结合强度。使用 X 射线光电子能谱分析氧化锆表面成分。
(3-丙烯酰氧基丙基)三甲氧基硅烷与双-1,2-(三乙氧基硅基)乙烷(干燥储存)混合的最高剪切结合强度为 11.8 ± 3.5 MPa。(3-丙烯酰氧基丙基)三甲氧基硅烷与两种交联硅烷,双-1,2-(三乙氧基硅基)乙烷和双[3-(三甲氧基硅基)丙基]胺混合后的平均剪切结合强度值在热循环后有显著差异(p < 3.9 × 10(-8))。氧化锆的各种表面处理影响表面粗糙度(p < 4.6 × 10(-6))。化学组成分析表明,喷砂后硅和氧含量增加。
结果表明,功能[3-丙烯酰氧基丙基]三甲氧基硅烷与交联双[3-(三甲氧基硅基)丙基]胺的组合显示出比与双-1,2-(三乙氧基硅基)乙烷更好的水解稳定性。