Suppr超能文献

神经内分泌特征与非小细胞肺癌预后的相关性

Correlation of neuroendocrine features with prognosis of non-small cell lung cancer.

作者信息

Feng Jianguo, Sheng Huaying, Zhu Chihong, Qian Xiaoqian, Wan Danying, Su Dan, Chen Xufeng, Zhu Liming

机构信息

Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, China.

Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.

出版信息

Oncotarget. 2016 Nov 1;7(44):71727-71736. doi: 10.18632/oncotarget.12327.

Abstract

The improvement in histological diagnostic tools, including neuroendocrine markers by immunohistochemistry (IHC), has led to increased recognition of non-small cell lung cancer (NSCLC) with neuroendocrine (NE) feature. However, little is known regarding the prevalence and clinical implications of NE feature in patients with NSCLC. In this study, we performed IHC in a tissue microarray containing 451 Chinese NSCLC cases, and analyzed correlation of the expression of neuroendocrine marker with pathological and clinical features of NSCLC. The result showed that NE feature in NSCLC was detectable in almost 30% of studied patients, and tumors with NE feature were significantly correlated with pathological classification, clinical stages and cell differentiation of NSCLC. Our data also revealed that NE feature indicated worse overall survival and disease free survival. Compared with mutant p53, NE markers showed more significance as for prognostic evaluation. Multi-factor COX analysis further suggested a potential clinical impact for NE feature as an independent indicator of poor prognosis for NSCLC patients.

摘要

包括免疫组织化学(IHC)中的神经内分泌标志物在内的组织学诊断工具的改进,使得具有神经内分泌(NE)特征的非小细胞肺癌(NSCLC)得到了更多的认识。然而,对于NSCLC患者中NE特征的患病率和临床意义知之甚少。在本研究中,我们对一个包含451例中国NSCLC病例的组织芯片进行了IHC检测,并分析了神经内分泌标志物的表达与NSCLC病理及临床特征的相关性。结果显示,几乎30%的研究患者中可检测到NSCLC的NE特征,具有NE特征的肿瘤与NSCLC的病理分类、临床分期及细胞分化显著相关。我们的数据还显示,NE特征提示总体生存率和无病生存率更差。与突变型p53相比,NE标志物在预后评估方面更具意义。多因素COX分析进一步表明,NE特征作为NSCLC患者预后不良的独立指标具有潜在的临床影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ca/5342116/91f2becfd4c7/oncotarget-07-71727-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验