Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, 80309, USA.
Angew Chem Int Ed Engl. 2016 Oct 24;55(44):13710-13713. doi: 10.1002/anie.201603458. Epub 2016 Sep 30.
DNA is increasingly used to engineer dynamic nanoscale circuits, structures, and motors, many of which rely on DNA strand-displacement reactions. The use of functional DNA sequences (e.g., aptamers, which bind to a wide range of ligands) in these reactions would potentially confer responsiveness on such devices, and integrate DNA computation with highly varied molecular stimuli. By using high-throughput single-molecule FRET methods, we compared the kinetics of a putative aptamer-ligand and aptamer-complement strand-displacement reaction. We found that the ligands actively disrupted the DNA duplex in the presence of a DNA toehold in a similar manner to complementary DNA, with kinetic details specific to the aptamer structure, thus suggesting that the DNA strand-displacement concept can be extended to functional DNA-ligand systems.
DNA 越来越多地被用于设计动态的纳米级电路、结构和马达,其中许多都依赖于 DNA 链置换反应。在这些反应中使用功能 DNA 序列(例如,与广泛的配体结合的适体)有可能赋予这些设备响应性,并将 DNA 计算与高度变化的分子刺激相结合。通过使用高通量单分子 FRET 方法,我们比较了假定的适体-配体和适体-互补链置换反应的动力学。我们发现,配体在 DNA 衔接子的存在下以类似于互补 DNA 的方式主动破坏 DNA 双链体,其动力学细节与适体结构有关,因此表明 DNA 链置换概念可以扩展到功能性 DNA-配体系统。