Meister Konrad, Bäumer Alexander, Szilvay Geza R, Paananen Arja, Bakker Huib J
FOM-Institute for Atomic and Molecular Physics AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
Physical Chemistry II, Ruhr University Bochum , Universitätsstr. 150, 44801 Bochum, Germany.
J Phys Chem Lett. 2016 Oct 20;7(20):4067-4071. doi: 10.1021/acs.jpclett.6b01917. Epub 2016 Oct 3.
We use surface-specific vibrational sum-frequency generation spectroscopy (VSFG) to study the structure and self-assembling mechanism of the class I hydrophobin SC3 from Schizophyllum commune and the class II hydrophobin HFBI from Trichoderma reesei. We find that both hydrophobins readily accumulate at the water-air interface and form rigid, highly ordered protein films that give rise to prominent VSFG signals. We identify several resonances that are associated with β-sheet structures and assign them to the central β-barrel core present in both proteins. Differences between the hydrophobin classes are observed in their interfacial self-assembly. For HFBI, we observe no changes in conformation upon adsorption to the water surface. For SC3, we observe an increase in β-sheet-specific signals that supports a surface-driven self-assembly mechanism in which the central β-barrel remains intact and stacks into a larger-scale architecture, amyloid-like rodlets.
我们使用表面特异性振动和频光谱(VSFG)来研究来自裂褶菌的I类疏水蛋白SC3以及来自里氏木霉的II类疏水蛋白HFBI的结构和自组装机制。我们发现,这两种疏水蛋白都很容易在水-空气界面处积累,并形成刚性的、高度有序的蛋白质膜,从而产生显著的VSFG信号。我们识别出了几个与β-折叠结构相关的共振峰,并将它们归因于这两种蛋白质中都存在的中央β-桶状核心。在疏水蛋白类别之间,我们观察到了它们在界面自组装方面的差异。对于HFBI,我们观察到其吸附到水表面时构象没有变化。对于SC3,我们观察到β-折叠特异性信号增加,这支持了一种表面驱动的自组装机制,即中央β-桶状结构保持完整,并堆叠成更大规模的结构,即淀粉样小杆。