Suppr超能文献

疏水蛋白SC3作为单体以及在疏水/亲水界面自组装后的结构表征。

Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces.

作者信息

de Vocht M L, Scholtmeijer K, van der Vegte E W, de Vries O M, Sonveaux N, Wösten H A, Ruysschaert J M, Hadziloannou G, Wessels J G, Robillard G T

机构信息

Department of Biochemistry, and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands.

出版信息

Biophys J. 1998 Apr;74(4):2059-68. doi: 10.1016/s0006-3495(98)77912-3.

Abstract

Hydrophobins are small fungal proteins that self-assemble at hydrophilic/hydrophobic interfaces into amphipathic membranes that, in the case of Class I hydrophobins, can be disassembled only by treatment with agents like pure trifluoroacetic acid. Here we characterize, by spectroscopic techniques, the structural changes that occur upon assembly at an air/water interface and upon assembly on a hydrophobic solid surface, and the influence of deglycosylation on these events. We determined that the hydrophobin SC3 from Schizophyllum commune contains 16-22 O-linked mannose residues, probably attached to the N-terminal part of the peptide chain. Scanning force microscopy revealed that SC3 adsorbs specifically to a hydrophobic surface and cannot be removed by heating at 100 degrees C in 2% sodium dodecyl sulfate. Attenuated total reflection Fourier transform infrared spectroscopy and circular dichroism spectroscopy revealed that the monomeric, water-soluble form of the protein is rich in beta-sheet structure and that the amount of beta-sheet is increased after self-assembly on a water-air interface. Alpha-helix is induced specifically upon assembly of the protein on a hydrophobic solid. We propose a model for the formation of rodlets, which may be induced by dehydration and a conformational change of the glycosylated part of the protein, resulting in the formation of an amphipathic alpha-helix that forms an anchor for binding to a substrate. The assembly in the beta-sheet form seems to be involved in lowering of the surface tension, a potential function of hydrophobins.

摘要

疏水蛋白是一类小型真菌蛋白,它们在亲水/疏水界面自组装形成两亲性膜,对于I类疏水蛋白而言,只有用纯三氟乙酸等试剂处理才能使其解体。在此,我们通过光谱技术表征了在空气/水界面组装以及在疏水固体表面组装时发生的结构变化,以及去糖基化对这些过程的影响。我们确定来自裂褶菌的疏水蛋白SC3含有16 - 22个O - 连接的甘露糖残基,可能连接在肽链的N端部分。扫描力显微镜显示SC3特异性吸附到疏水表面,在2%十二烷基硫酸钠中100℃加热也不能将其去除。衰减全反射傅里叶变换红外光谱和圆二色光谱表明,该蛋白的单体水溶性形式富含β - 折叠结构,在水 - 空气界面自组装后β - 折叠的量增加。在疏水固体上组装蛋白时会特异性诱导α - 螺旋形成。我们提出了一个杆状结构形成的模型,这可能是由蛋白质糖基化部分的脱水和构象变化诱导的,导致形成两亲性α - 螺旋,该螺旋形成与底物结合的锚定结构。以β - 折叠形式的组装似乎参与了表面张力的降低,这是疏水蛋白的一个潜在功能。

相似文献

2
Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates.
Protein Sci. 2002 May;11(5):1199-205. doi: 10.1110/ps.4540102.
4
Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution.
Biochim Biophys Acta. 2014 Jul;1844(7):1231-7. doi: 10.1016/j.bbapap.2014.04.003. Epub 2014 Apr 13.
7
Hydrophobins, the fungal coat unravelled.
Biochim Biophys Acta. 2000 Sep 18;1469(2):79-86. doi: 10.1016/s0304-4157(00)00002-2.
8
Molecular dynamics study of the folding of hydrophobin SC3 at a hydrophilic/hydrophobic interface.
Biophys J. 2002 Jul;83(1):112-24. doi: 10.1016/S0006-3495(02)75153-9.
9
The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties.
Biophys J. 2005 May;88(5):3434-43. doi: 10.1529/biophysj.104.057794. Epub 2005 Mar 4.
10
Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi.
J Mol Biol. 2018 Oct 12;430(20):3784-3801. doi: 10.1016/j.jmb.2018.07.025. Epub 2018 Aug 7.

引用本文的文献

2
Exploring the Critical Environmental Optima and Biotechnological Prospects of Fungal Fruiting Bodies.
Microb Biotechnol. 2025 Aug;18(8):e70210. doi: 10.1111/1751-7915.70210.
3
Identification and Characterization of a Predominant Hydrophobin in the Edible Mushroom .
J Fungi (Basel). 2023 Dec 29;10(1):25. doi: 10.3390/jof10010025.
5
Probing Cell-Surface Interactions in Fungal Cell Walls by High-Resolution H-Detected Solid-State NMR Spectroscopy.
Chemistry. 2023 Jan 2;29(1):e202202616. doi: 10.1002/chem.202202616. Epub 2022 Nov 10.
6
Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation.
Microorganisms. 2022 Jul 25;10(8):1498. doi: 10.3390/microorganisms10081498.
7
Dynamical shapes of droplets of cyclodextrin-surfactant solutions.
Sci Rep. 2022 Mar 28;12(1):5252. doi: 10.1038/s41598-022-09267-w.
8
Adsorption Kinetics and Self-Assembled Structures of Aspergillus oryzae Hydrophobin RolA on Hydrophobic and Charged Solid Surfaces.
Appl Environ Microbiol. 2022 Mar 22;88(6):e0208721. doi: 10.1128/AEM.02087-21. Epub 2022 Feb 2.
10
Creating Surface Properties Using a Palette of Hydrophobins.
Materials (Basel). 2010 Sep 6;3(9):4607-4625. doi: 10.3390/ma3094607.

本文引用的文献

1
Functional group imaging by chemical force microscopy.
Science. 1994 Sep 30;265(5181):2071-4. doi: 10.1126/science.265.5181.2071.
2
3
Interfacial Self-Assembly of a Fungal Hydrophobin into a Hydrophobic Rodlet Layer.
Plant Cell. 1993 Nov;5(11):1567-1574. doi: 10.1105/tpc.5.11.1567.
4
Circular dichroic analysis of protein conformation: inclusion of the beta-turns.
Anal Biochem. 1978 Nov;91(1):13-31. doi: 10.1016/0003-2697(78)90812-6.
6
O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins.
Nucleic Acids Res. 1997 Jan 1;25(1):278-82. doi: 10.1093/nar/25.1.278.
7
Hydrophobins: proteins that change the nature of the fungal surface.
Adv Microb Physiol. 1997;38:1-45. doi: 10.1016/s0065-2911(08)60154-x.
8
An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies.
Microbiology (Reading). 1996 May;142 ( Pt 5):1321-1329. doi: 10.1099/13500872-142-5-1321.
9
A comparison of the surface activity of the fungal hydrophobin SC3p with those of other proteins.
Biophys Chem. 1996 Jan;57(2-3):253-60. doi: 10.1016/0301-4622(95)00059-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验