Suppr超能文献

NEIL3糖基化酶对DNA链间交联进行依赖复制的解钩作用。

Replication-Dependent Unhooking of DNA Interstrand Cross-Links by the NEIL3 Glycosylase.

作者信息

Semlow Daniel R, Zhang Jieqiong, Budzowska Magda, Drohat Alexander C, Walter Johannes C

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

出版信息

Cell. 2016 Oct 6;167(2):498-511.e14. doi: 10.1016/j.cell.2016.09.008. Epub 2016 Sep 29.

Abstract

During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-coupled ICL repair pathway that does not require incisions or FANCI-FANCD2. Instead, the ICL is unhooked when one of the two N-glycosyl bonds forming the cross-link is cleaved by the DNA glycosylase NEIL3. Cleavage by NEIL3 is the primary unhooking mechanism for psoralen and abasic site ICLs. When N-glycosyl bond cleavage is prevented, unhooking occurs via FANCI-FANCD2-dependent incisions. In summary, we identify an incision-independent unhooking mechanism that avoids DSB formation and represents the preferred pathway of ICL repair in a vertebrate cell-free system.

摘要

在真核生物DNA链间交联(ICL)修复过程中,交联通过损伤周围的核酸酶切割得以解决(“解开”)。在脊椎动物中,当复制叉与损伤部位碰撞时,ICL修复被触发,导致FANCI-FANCD2依赖的解开以及双链断裂(DSB)中间体的形成。利用非洲爪蟾卵提取物,我们在此描述了一种复制偶联的ICL修复途径,该途径不需要切割或FANCI-FANCD2。相反,当形成交联的两个N-糖苷键之一被DNA糖基化酶NEIL3切割时,ICL被解开。NEIL3的切割是补骨脂素和无碱基位点ICL的主要解钩机制。当N-糖苷键切割被阻止时,解钩通过FANCI-FANCD2依赖的切割发生。总之,我们鉴定出一种不依赖切割的解钩机制,该机制可避免DSB形成,并且是脊椎动物无细胞系统中ICL修复的首选途径。

相似文献

1
Replication-Dependent Unhooking of DNA Interstrand Cross-Links by the NEIL3 Glycosylase.
Cell. 2016 Oct 6;167(2):498-511.e14. doi: 10.1016/j.cell.2016.09.008. Epub 2016 Sep 29.
2
Cooperation of the NEIL3 and Fanconi anemia/BRCA pathways in interstrand crosslink repair.
Nucleic Acids Res. 2020 Apr 6;48(6):3014-3028. doi: 10.1093/nar/gkaa038.
3
Mechanism of RAD51-dependent DNA interstrand cross-link repair.
Science. 2011 Jul 1;333(6038):84-7. doi: 10.1126/science.1204258.
4
The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair.
Science. 2009 Dec 18;326(5960):1698-701. doi: 10.1126/science.1182372. Epub 2009 Nov 12.
6
FANCI and FANCD2 have common as well as independent functions during the cellular replication stress response.
Nucleic Acids Res. 2017 Nov 16;45(20):11837-11857. doi: 10.1093/nar/gkx847.
7
XPF-ERCC1 participates in the Fanconi anemia pathway of cross-link repair.
Mol Cell Biol. 2009 Dec;29(24):6427-37. doi: 10.1128/MCB.00086-09. Epub 2009 Oct 5.
10
XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4.
Mol Cell. 2014 May 8;54(3):460-71. doi: 10.1016/j.molcel.2014.03.015. Epub 2014 Apr 10.

引用本文的文献

2
Protein-Protein Interactions in Base Excision Repair.
Biomolecules. 2025 Jun 18;15(6):890. doi: 10.3390/biom15060890.
5
Catalytic and noncatalytic functions of DNA polymerase κ in translesion DNA synthesis.
Nat Struct Mol Biol. 2025 Feb;32(2):300-314. doi: 10.1038/s41594-024-01395-3. Epub 2024 Sep 19.
6
Repair of genomic interstrand crosslinks.
DNA Repair (Amst). 2024 Sep;141:103739. doi: 10.1016/j.dnarep.2024.103739. Epub 2024 Jul 30.
7
Structure and psoralen DNA crosslink repair activity of mycobacterial Nei2.
mBio. 2024 Aug 14;15(8):e0124824. doi: 10.1128/mbio.01248-24. Epub 2024 Jul 16.
8
Dual role of proliferating cell nuclear antigen monoubiquitination in facilitating Fanconi anemia-mediated interstrand crosslink repair.
PNAS Nexus. 2024 Jun 18;3(7):pgae242. doi: 10.1093/pnasnexus/pgae242. eCollection 2024 Jul.
9
An interstrand DNA crosslink glycosylase aids pathogenesis.
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2402422121. doi: 10.1073/pnas.2402422121. Epub 2024 Jun 26.
10
Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis.
J Mol Biol. 2024 Jul 1;436(13):168618. doi: 10.1016/j.jmb.2024.168618. Epub 2024 May 18.

本文引用的文献

1
The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
Nature. 2015 Nov 12;527(7577):254-8. doi: 10.1038/nature15728. Epub 2015 Oct 28.
2
What is the DNA repair defect underlying Fanconi anemia?
Curr Opin Cell Biol. 2015 Dec;37:49-60. doi: 10.1016/j.ceb.2015.09.002. Epub 2015 Nov 11.
3
Endogenous Formaldehyde Is a Hematopoietic Stem Cell Genotoxin and Metabolic Carcinogen.
Mol Cell. 2015 Oct 1;60(1):177-88. doi: 10.1016/j.molcel.2015.08.020. Epub 2015 Sep 24.
5
The mechanism of DNA replication termination in vertebrates.
Nature. 2015 Sep 17;525(7569):345-50. doi: 10.1038/nature14887. Epub 2015 Aug 31.
6
Regulation of the Rev1-pol ζ complex during bypass of a DNA interstrand cross-link.
EMBO J. 2015 Jul 14;34(14):1971-85. doi: 10.15252/embj.201490878. Epub 2015 Jun 12.
7
DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links.
Science. 2015 May 1;348(6234):1253671. doi: 10.1126/science.1253671. Epub 2015 Apr 30.
8
Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residues in duplex DNA.
Nucleic Acids Res. 2015 Apr 20;43(7):3434-41. doi: 10.1093/nar/gkv174. Epub 2015 Mar 16.
9
DNA interstrand cross-link repair requires replication-fork convergence.
Nat Struct Mol Biol. 2015 Mar;22(3):242-7. doi: 10.1038/nsmb.2956. Epub 2015 Feb 2.
10
Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication.
Science. 2014 Oct 24;346(6208):1253596. doi: 10.1126/science.1253596.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验