Luo Jingtao, Hong Yun, Lu Yang, Qiu Songbo, Chaganty Bharat K R, Zhang Lun, Wang Xudong, Li Qiang, Fan Zhen
Department of Head and Neck Surgical Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Cancer Lett. 2017 Jan 1;384:39-49. doi: 10.1016/j.canlet.2016.09.020. Epub 2016 Sep 28.
Cetuximab inhibits HIF-1-regulated glycolysis in cancer cells, thereby reversing the Warburg effect and leading to inhibition of cancer cell metabolism. AMP-activated protein kinase (AMPK) is activated after cetuximab treatment, and a sustained AMPK activity is a mechanism contributing to cetuximab resistance. Here, we investigated how acetyl-CoA carboxylase (ACC), a downstream target of AMPK, rewires cancer metabolism in response to cetuximab treatment. We found that introduction of experimental ACC mutants lacking the AMPK phosphorylation sites (ACC1_S79A and ACC2_S212A) into head and neck squamous cell carcinoma (HNSCC) cells protected HNSCC cells from cetuximab-induced growth inhibition. HNSCC cells with acquired cetuximab resistance contained not only high levels of T172-phosphorylated AMPK and S79-phosphorylated ACC1 but also an increased level of total ACC. These findings were corroborated in tumor specimens of HNSCC patients treated with cetuximab. Cetuximab plus TOFA (an allosteric inhibitor of ACC) achieved remarkable growth inhibition of cetuximab-resistant HNSCC xenografts. Our data suggest a novel paradigm in which cetuximab-mediated activation of AMPK and subsequent phosphorylation and inhibition of ACC is followed by a compensatory increase in total ACC, which rewires cancer metabolism from glycolysis-dependent to lipogenesis-dependent.
西妥昔单抗可抑制癌细胞中低氧诱导因子-1(HIF-1)调节的糖酵解,从而逆转瓦伯格效应并导致癌细胞代谢受到抑制。西妥昔单抗治疗后,腺苷酸活化蛋白激酶(AMPK)被激活,持续的AMPK活性是导致西妥昔单抗耐药的一种机制。在此,我们研究了AMPK的下游靶点乙酰辅酶A羧化酶(ACC)如何响应西妥昔单抗治疗而重塑癌症代谢。我们发现,将缺乏AMPK磷酸化位点的实验性ACC突变体(ACC1_S79A和ACC2_S212A)导入头颈部鳞状细胞癌(HNSCC)细胞中,可保护HNSCC细胞免受西妥昔单抗诱导的生长抑制。获得西妥昔单抗耐药性的HNSCC细胞不仅含有高水平的T172磷酸化AMPK和S79磷酸化ACC1,而且总ACC水平也有所升高。在用西妥昔单抗治疗的HNSCC患者的肿瘤标本中也证实了这些发现。西妥昔单抗联合TOFA(ACC的变构抑制剂)对西妥昔单抗耐药的HNSCC异种移植瘤实现了显著的生长抑制。我们的数据表明了一种新的模式,即西妥昔单抗介导的AMPK激活以及随后ACC的磷酸化和抑制,之后总ACC会代偿性增加,从而将癌症代谢从糖酵解依赖性转变为脂肪生成依赖性。