Suppr超能文献

棘阿米巴和盘基网柄菌采用不同的觅食策略。

Acanthamoeba and Dictyostelium Use Different Foraging Strategies.

作者信息

Kuburich Nick A, Adhikari Nirakar, Hadwiger Jeffrey A

机构信息

Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078-3020, USA.

出版信息

Protist. 2016 Dec;167(6):511-525. doi: 10.1016/j.protis.2016.08.006. Epub 2016 Sep 6.

Abstract

Amoeba often use cell movement as a mechanism to find food, such as bacteria, in their environment. The chemotactic movement of the soil amoeba Dictyostelium to folate or other pterin compounds released by bacteria is a well-documented foraging mechanism. Acanthamoeba can also feed on bacteria but relatively little is known about the mechanism(s) by which this amoeba locates bacteria. Acanthamoeba movement in the presence of folate or bacteria was analyzed in above agar assays and compared to that observed for Dictyostelium. The overall mobility of Acanthamoeba was robust like that of Dictyostelium but Acanthamoeba did not display a chemotactic response to folate. In the presence of bacteria, Acanthamoeba only showed a marginal bias in directed movement whereas Dictyostelium displayed a strong chemotactic response. A comparison of genomes revealed that Acanthamoeba and Dictyostelium share some similarities in G protein signaling components but that specific G proteins used in Dictyostelium chemotactic responses were not present in current Acanthamoeba genome sequence data. The results of this study suggest that Acanthamoeba does not use chemotaxis as the primary mechanism to find bacterial food sources and that the chemotactic responses of Dictyostelium to bacteria may have co-evolved with chemotactic responses that facilitate multicellular development.

摘要

变形虫常常利用细胞运动作为在其环境中寻找食物(如细菌)的一种机制。土壤变形虫盘基网柄菌对细菌释放的叶酸或其他蝶呤化合物的趋化运动是一种有充分记录的觅食机制。棘阿米巴也能以细菌为食,但对于这种变形虫定位细菌的机制了解相对较少。在上述琼脂试验中分析了棘阿米巴在叶酸或细菌存在时的运动,并与盘基网柄菌的运动进行了比较。棘阿米巴的总体移动性与盘基网柄菌一样强劲,但棘阿米巴对叶酸没有表现出趋化反应。在有细菌存在的情况下,棘阿米巴在定向运动中仅表现出轻微的偏向,而盘基网柄菌则表现出强烈的趋化反应。基因组比较显示,棘阿米巴和盘基网柄菌在G蛋白信号成分方面有一些相似之处,但盘基网柄菌趋化反应中使用的特定G蛋白在当前的棘阿米巴基因组序列数据中并不存在。这项研究的结果表明,棘阿米巴并不将趋化作用作为寻找细菌食物来源的主要机制,并且盘基网柄菌对细菌的趋化反应可能与促进多细胞发育的趋化反应共同进化。

相似文献

1
Acanthamoeba and Dictyostelium Use Different Foraging Strategies.
Protist. 2016 Dec;167(6):511-525. doi: 10.1016/j.protis.2016.08.006. Epub 2016 Sep 6.
2
Dictyostelium Erk2 is an atypical MAPK required for chemotaxis.
Cell Signal. 2018 Jun;46:154-165. doi: 10.1016/j.cellsig.2018.03.006. Epub 2018 Mar 15.
4
Assessment of development and chemotaxis in Dictyostelium discoideum mutants.
Methods Mol Biol. 2011;769:287-309. doi: 10.1007/978-1-61779-207-6_20.
5
Microbe Profile: : model system for development, chemotaxis and biomedical research.
Microbiology (Reading). 2021 Mar;167(3). doi: 10.1099/mic.0.001040. Epub 2021 Mar 1.
7
Under-agarose chemotaxis of Dictyostelium discoideum.
Methods Mol Biol. 2006;346:311-25. doi: 10.1385/1-59745-144-4:311.
10
TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium.
Mol Biol Cell. 2005 Oct;16(10):4572-83. doi: 10.1091/mbc.e05-04-0342. Epub 2005 Aug 3.

引用本文的文献

2
Pleiotropic regulation of bacterial toxin production and Allee effect govern microbial predator-prey interactions.
ISME Commun. 2025 Feb 14;5(1):ycaf031. doi: 10.1093/ismeco/ycaf031. eCollection 2025 Jan.
3
Examining the influence of environmental factors on Acanthamoeba castellanii and Pseudomonas aeruginosa in co-culture.
PLoS One. 2024 Jun 24;19(6):e0305973. doi: 10.1371/journal.pone.0305973. eCollection 2024.
4
Continuous Real-Time Motility Analysis of Reveals Sustained Movement in Absence of Nutrients.
Pathogens. 2021 Aug 6;10(8):995. doi: 10.3390/pathogens10080995.
5
War of the microbial world: Acanthamoeba spp. interactions with microorganisms.
Folia Microbiol (Praha). 2021 Oct;66(5):689-699. doi: 10.1007/s12223-021-00889-7. Epub 2021 Jun 18.
6
The Ecology and Evolution of Amoeba-Bacterium Interactions.
Appl Environ Microbiol. 2021 Jan 4;87(2). doi: 10.1128/AEM.01866-20.
7
Dictyostelium Erk2 is an atypical MAPK required for chemotaxis.
Cell Signal. 2018 Jun;46:154-165. doi: 10.1016/j.cellsig.2018.03.006. Epub 2018 Mar 15.

本文引用的文献

1
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
3
Chemotaxis of a model organism: progress with Dictyostelium.
Curr Opin Cell Biol. 2015 Oct;36:7-12. doi: 10.1016/j.ceb.2015.06.005. Epub 2015 Jul 14.
4
The Dictyostelium MAPK ERK1 is phosphorylated in a secondary response to early developmental signaling.
Cell Signal. 2015 Jan;27(1):147-55. doi: 10.1016/j.cellsig.2014.10.009. Epub 2014 Oct 29.
5
Multigene phylogeny resolves deep branching of Amoebozoa.
Mol Phylogenet Evol. 2015 Feb;83:293-304. doi: 10.1016/j.ympev.2014.08.011. Epub 2014 Aug 20.
6
The Dictyostelium discoideum RACK1 orthologue has roles in growth and development.
Cell Commun Signal. 2014 Jun 15;12:37. doi: 10.1186/1478-811X-12-37.
7
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes.
Cell Mol Life Sci. 2014 Oct;71(19):3711-47. doi: 10.1007/s00018-014-1638-8. Epub 2014 May 21.
9
The cyclic AMP phosphodiesterase RegA critically regulates encystation in social and pathogenic amoebas.
Cell Signal. 2014 Feb;26(2):453-9. doi: 10.1016/j.cellsig.2013.10.008. Epub 2013 Oct 31.
10
Collection and cultivation of dictyostelids from the wild.
Methods Mol Biol. 2013;983:113-24. doi: 10.1007/978-1-62703-302-2_6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验