Suppr超能文献

BEL信息提取工作流程(BELIEF):在生物创意V BEL和IAT赛道中的评估

The BEL information extraction workflow (BELIEF): evaluation in the BioCreative V BEL and IAT track.

作者信息

Madan Sumit, Hodapp Sven, Senger Philipp, Ansari Sam, Szostak Justyna, Hoeng Julia, Peitsch Manuel, Fluck Juliane

机构信息

Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin, Germany

Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin, Germany.

出版信息

Database (Oxford). 2016 Oct 2;2016. doi: 10.1093/database/baw136. Print 2016.

Abstract

Network-based approaches have become extremely important in systems biology to achieve a better understanding of biological mechanisms. For network representation, the Biological Expression Language (BEL) is well designed to collate findings from the scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a BEL Information Extraction Workflow (BELIEF) was developed. BELIEF provides a web-based curation interface, the BELIEF Dashboard, that incorporates text mining techniques to support the biocurator in the generation of BEL networks. The underlying UIMA-based text mining pipeline (BELIEF Pipeline) uses several named entity recognition processes and relationship extraction methods to detect concepts and BEL relationships in literature. The BELIEF Dashboard allows easy curation of the automatically generated BEL statements and their context annotations. Resulting BEL statements and their context annotations can be syntactically and semantically verified to ensure consistency in the BEL network. In summary, the workflow supports experts in different stages of systems biology network building. Based on the BioCreative V BEL track evaluation, we show that the BELIEF Pipeline automatically extracts relationships with an F-score of 36.4% and fully correct statements can be obtained with an F-score of 30.8%. Participation in the BioCreative V Interactive task (IAT) track with BELIEF revealed a systems usability scale (SUS) of 67. Considering the complexity of the task for new users-learning BEL, working with a completely new interface, and performing complex curation-a score so close to the overall SUS average highlights the usability of BELIEF.Database URL: BELIEF is available at http://www.scaiview.com/belief/.

摘要

在系统生物学中,基于网络的方法对于更好地理解生物学机制已变得极为重要。对于网络表示,生物表达语言(BEL)经过精心设计,可将科学文献中的研究结果整理成生物网络模型。为便于在BEL中对这些研究结果进行编码和生物编目,开发了一种BEL信息提取工作流程(BELIEF)。BELIEF提供了一个基于网络的编目界面——BELIEF仪表板,该界面整合了文本挖掘技术,以支持生物编目人员生成BEL网络。基于UIMA的底层文本挖掘管道(BELIEF管道)使用多种命名实体识别过程和关系提取方法来检测文献中的概念和BEL关系。BELIEF仪表板允许轻松管理自动生成的BEL语句及其上下文注释。生成的BEL语句及其上下文注释可进行句法和语义验证,以确保BEL网络的一致性。总之,该工作流程支持系统生物学网络构建不同阶段的专家。基于生物创意V BEL跟踪评估,我们表明BELIEF管道自动提取关系的F值为36.4%,完全正确的语句的F值为30.8%。使用BELIEF参与生物创意V交互式任务(IAT)跟踪显示系统可用性量表(SUS)为67。考虑到新用户学习BEL、使用全新界面以及执行复杂编目任务的复杂性,如此接近总体SUS平均值的分数突出了BELIEF的可用性。数据库网址:BELIEF可在http://www.scaiview.com/belief/获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05fa/5045868/5e207788cf9d/baw136f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验