Suppr超能文献

疾病图谱导航:分子特征语境化的知识表示。

Navigating the disease landscape: knowledge representations for contextualizing molecular signatures.

机构信息

Mansoor Saqi Data Science Institute, Imperial College London, UK.

Artem Lysenko Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.

出版信息

Brief Bioinform. 2019 Mar 25;20(2):609-623. doi: 10.1093/bib/bby025.

Abstract

Large amounts of data emerging from experiments in molecular medicine are leading to the identification of molecular signatures associated with disease subtypes. The contextualization of these patterns is important for obtaining mechanistic insight into the aberrant processes associated with a disease, and this typically involves the integration of multiple heterogeneous types of data. In this review, we discuss knowledge representations that can be useful to explore the biological context of molecular signatures, in particular three main approaches, namely, pathway mapping approaches, molecular network centric approaches and approaches that represent biological statements as knowledge graphs. We discuss the utility of each of these paradigms, illustrate how they can be leveraged with selected practical examples and identify ongoing challenges for this field of research.

摘要

大量源自分子医学实验的数据正在导致与疾病亚型相关的分子特征的鉴定。这些模式的语境化对于获得与疾病相关的异常过程的机制见解很重要,这通常涉及多种异构类型数据的整合。在这篇综述中,我们讨论了可以用于探索分子特征的生物学背景的知识表示,特别是三种主要方法,即途径映射方法、分子网络中心方法和将生物学陈述表示为知识图的方法。我们讨论了这些范例中的每一个的实用性,通过选择实际示例来说明如何利用它们,并确定该研究领域的持续挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/671f/6556902/11fb16cd4764/bby025f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验