Suppr超能文献

钚与假单胞菌属菌株EPS-1W及其胞外聚合物的相互作用。

Interactions of Plutonium with Pseudomonas sp. Strain EPS-1W and Its Extracellular Polymeric Substances.

作者信息

Boggs Mark A, Jiao Yongqin, Dai Zurong, Zavarin Mavrik, Kersting Annie B

机构信息

Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California, USA

Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA.

出版信息

Appl Environ Microbiol. 2016 Nov 21;82(24):7093-7101. doi: 10.1128/AEM.02572-16. Print 2016 Dec 15.

Abstract

UNLABELLED

Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) to Pseudomonas sp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu)-contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS) in Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild-type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the same sorption affinity for Pu(IV). In vitro experiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission electron microscopy indicated that 2- to 3-nm nanocrystalline Pu(IV)O formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates.

IMPORTANCE

Our results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV) and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results, along with a growing body of literature, highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.

摘要

未标记

安全有效地处置核废料以及意外释放放射性核素,需要我们了解放射性核素在环境中的归宿,包括它们与微生物的相互作用。我们研究了钚(IV)和钚(V)对假单胞菌属菌株EPS-1W的吸附作用,该需氧细菌是从美国内华达州国家安全站点(NNSS)受钚(Pu)污染的地下水中分离出来的。我们比较了钚在有和没有结合胞外聚合物(EPS)的细胞上的吸附情况。具有完整EPS的野生型细胞比去除EPS的细胞更有效地吸附钚(V)。相比之下,有和没有EPS的细胞对钚(IV)表现出相同的吸附亲和力。用提取的EPS进行的体外实验表明,钚(V)迅速还原为钚(IV)。透射电子显微镜显示,在与高浓度钚(IV)而非钚(V)平衡的细胞上形成了2至3纳米的纳米晶钚(IV)氧化物。因此,EPS虽然促进钚(V)的还原,但抑制纳米晶钚(IV)沉淀物的形成。

重要性

我们的结果表明,EPS是钚(V)的有效还原剂和钚(IV)的吸附剂,可能会影响钚在环境中的氧化还原循环和迁移率。此外,与EPS相关的所得钚形态将取决于浓度和初始钚氧化态。虽然我们的结果不能直接应用于NNSS的钚运输情况,但结果表明,一般来说,固定的微生物和生物膜将倾向于限制钚的迁移,并在环境中提供重要的钚阻滞机制。从更广泛的意义上说,我们的结果以及越来越多的文献突出了微生物作为氧化还原活性有机配体生产者的重要作用,因此也是地下放射性核素氧化还原转化和络合的调节剂。

相似文献

1
Interactions of Plutonium with Pseudomonas sp. Strain EPS-1W and Its Extracellular Polymeric Substances.
Appl Environ Microbiol. 2016 Nov 21;82(24):7093-7101. doi: 10.1128/AEM.02572-16. Print 2016 Dec 15.
2
Pu(V) transport through Savannah River Site soils - an evaluation of a conceptual model of surface- mediated reduction to Pu (IV).
J Environ Radioact. 2014 May;131:47-56. doi: 10.1016/j.jenvrad.2013.10.009. Epub 2013 Nov 13.
3
Microbial mobilization of plutonium and other actinides from contaminated soil.
J Environ Radioact. 2015 Dec;150:277-85. doi: 10.1016/j.jenvrad.2015.08.019. Epub 2015 Sep 25.
4
Plutonium environmental chemistry: mechanisms for the surface-mediated reduction of Pu(v/vi).
Environ Sci Process Impacts. 2018 Oct 17;20(10):1306-1322. doi: 10.1039/c7em00369b.
5
Plutonium(IV) and (V) Sorption to Goethite at Sub-Femtomolar to Micromolar Concentrations: Redox Transformations and Surface Precipitation.
Environ Sci Technol. 2016 Jul 5;50(13):6948-56. doi: 10.1021/acs.est.6b00605. Epub 2016 Jun 17.
6
Hydrothermal Alteration of Nuclear Melt Glass, Colloid Formation, and Plutonium Mobilization at the Nevada National Security Site, U.S.A.
Environ Sci Technol. 2019 Jul 2;53(13):7363-7370. doi: 10.1021/acs.est.8b07199. Epub 2019 Jun 21.
7
Plutonium immobilization and remobilization by soil mineral and organic matter in the far-field of the Savannah River Site, U.S.
Environ Sci Technol. 2014 Mar 18;48(6):3186-95. doi: 10.1021/es404951y. Epub 2014 Mar 4.
8
Plutonium interaction studies with the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99: changes in the plutonium speciation by solvent extractions.
Environ Sci Pollut Res Int. 2017 May;24(15):13497-13508. doi: 10.1007/s11356-017-8969-6. Epub 2017 Apr 7.
9
Impact of environmental curium on plutonium migration and isotopic signatures.
Environ Sci Technol. 2014 Dec 2;48(23):13985-91. doi: 10.1021/es500968n. Epub 2014 Nov 12.

引用本文的文献

1
Subsurface Transport of Plutonium in Organic and Aqueous Acidic Processing Wastes at the Hanford Site, USA.
Environ Sci Technol. 2024 May 21;58(20):8909-8918. doi: 10.1021/acs.est.3c10082. Epub 2024 May 10.
3
To form or not to form: PuO nanoparticles at acidic pH.
Environ Sci Nano. 2022 Mar 11;9(4):1509-1518. doi: 10.1039/d1en00666e. eCollection 2022 Apr 14.
4
Articulating the exuberant intricacies of bacterial exopolysaccharides to purge environmental pollutants.
Heliyon. 2021 Nov 22;7(11):e08446. doi: 10.1016/j.heliyon.2021.e08446. eCollection 2021 Nov.
5
Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications.
Microb Biotechnol. 2021 May;14(3):810-828. doi: 10.1111/1751-7915.13718. Epub 2020 Dec 8.
6
Speciation of Uranium and Plutonium From Nuclear Legacy Sites to the Environment: A Mini Review.
Front Chem. 2020 Aug 12;8:630. doi: 10.3389/fchem.2020.00630. eCollection 2020.

本文引用的文献

1
Influence of riboflavin on the reduction of radionuclides by Shewanella oneidenis MR-1.
Dalton Trans. 2016 Mar 28;45(12):5030-7. doi: 10.1039/c4dt02929a.
2
Denoising NMR time-domain signal by singular-value decomposition accelerated by graphics processing units.
Solid State Nucl Magn Reson. 2014 Jul-Sep;61-62:28-34. doi: 10.1016/j.ssnmr.2014.05.001. Epub 2014 May 16.
3
Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity.
Environ Sci Technol. 2014;48(1):316-22. doi: 10.1021/es403796x. Epub 2013 Dec 20.
5
Biogeochemical controls on the product of microbial U(VI) reduction.
Environ Sci Technol. 2013;47(21):12351-8. doi: 10.1021/es402631w. Epub 2013 Oct 23.
6
Pu(V) and Pu(IV) sorption to montmorillonite.
Environ Sci Technol. 2013 May 21;47(10):5146-53. doi: 10.1021/es305257s. Epub 2013 May 13.
7
Production and characterization of an extracellular polysaccharide from Streptomyces violaceus MM72.
Int J Biol Macromol. 2013 Aug;59:29-38. doi: 10.1016/j.ijbiomac.2013.04.012. Epub 2013 Apr 15.
8
Plutonium transport in the environment.
Inorg Chem. 2013 Apr 1;52(7):3533-46. doi: 10.1021/ic3018908. Epub 2013 Mar 4.
10
Solubilization of plutonium hydrous oxide by iron-reducing bacteria.
Environ Sci Technol. 1994 Sep 1;28(9):1686-90. doi: 10.1021/es00058a021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验