Boggs Mark A, Jiao Yongqin, Dai Zurong, Zavarin Mavrik, Kersting Annie B
Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California, USA
Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA.
Appl Environ Microbiol. 2016 Nov 21;82(24):7093-7101. doi: 10.1128/AEM.02572-16. Print 2016 Dec 15.
Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) to Pseudomonas sp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu)-contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS) in Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild-type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the same sorption affinity for Pu(IV). In vitro experiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission electron microscopy indicated that 2- to 3-nm nanocrystalline Pu(IV)O formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates.
Our results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV) and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results, along with a growing body of literature, highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.
安全有效地处置核废料以及意外释放放射性核素,需要我们了解放射性核素在环境中的归宿,包括它们与微生物的相互作用。我们研究了钚(IV)和钚(V)对假单胞菌属菌株EPS-1W的吸附作用,该需氧细菌是从美国内华达州国家安全站点(NNSS)受钚(Pu)污染的地下水中分离出来的。我们比较了钚在有和没有结合胞外聚合物(EPS)的细胞上的吸附情况。具有完整EPS的野生型细胞比去除EPS的细胞更有效地吸附钚(V)。相比之下,有和没有EPS的细胞对钚(IV)表现出相同的吸附亲和力。用提取的EPS进行的体外实验表明,钚(V)迅速还原为钚(IV)。透射电子显微镜显示,在与高浓度钚(IV)而非钚(V)平衡的细胞上形成了2至3纳米的纳米晶钚(IV)氧化物。因此,EPS虽然促进钚(V)的还原,但抑制纳米晶钚(IV)沉淀物的形成。
我们的结果表明,EPS是钚(V)的有效还原剂和钚(IV)的吸附剂,可能会影响钚在环境中的氧化还原循环和迁移率。此外,与EPS相关的所得钚形态将取决于浓度和初始钚氧化态。虽然我们的结果不能直接应用于NNSS的钚运输情况,但结果表明,一般来说,固定的微生物和生物膜将倾向于限制钚的迁移,并在环境中提供重要的钚阻滞机制。从更广泛的意义上说,我们的结果以及越来越多的文献突出了微生物作为氧化还原活性有机配体生产者的重要作用,因此也是地下放射性核素氧化还原转化和络合的调节剂。