文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications.

作者信息

Lopez-Fernandez Margarita, Jroundi Fadwa, Ruiz-Fresneda Miguel A, Merroun Mohamed L

机构信息

Department of Microbiology, University of Granada, Avenida Fuentenueva s/n, Granada, 18071, Spain.

出版信息

Microb Biotechnol. 2021 May;14(3):810-828. doi: 10.1111/1751-7915.13718. Epub 2020 Dec 8.


DOI:10.1111/1751-7915.13718
PMID:33615734
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8085914/
Abstract

Radionuclides (RNs) generated by nuclear and civil industries are released in natural ecosystems and may have a hazardous impact on human health and the environment. RN-polluted environments harbour different microbial species that become highly tolerant of these elements through mechanisms including biosorption, biotransformation, biomineralization and intracellular accumulation. Such microbial-RN interaction processes hold biotechnological potential for the design of bioremediation strategies to deal with several contamination problems. This paper, with its multidisciplinary approach, provides a state-of-the-art review of most research endeavours aimed to elucidate how microbes deal with radionuclides and how they tolerate ionizing radiations. In addition, the most recent findings related to new biotechnological applications of microbes in the bioremediation of radionuclides and in the long-term disposal of nuclear wastes are described and discussed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c64/8085914/74ef749d3683/MBT2-14-810-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c64/8085914/66f0a5736269/MBT2-14-810-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c64/8085914/ef1f197dc077/MBT2-14-810-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c64/8085914/145a445d4a7e/MBT2-14-810-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c64/8085914/74ef749d3683/MBT2-14-810-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c64/8085914/66f0a5736269/MBT2-14-810-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c64/8085914/ef1f197dc077/MBT2-14-810-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c64/8085914/145a445d4a7e/MBT2-14-810-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c64/8085914/74ef749d3683/MBT2-14-810-g005.jpg

相似文献

[1]
Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications.

Microb Biotechnol. 2021-5

[2]
Radiation, radionuclides and bacteria: An in-perspective review.

J Environ Radioact. 2017-12

[3]
Bioremediation: a genuine technology to remediate radionuclides from the environment.

Microb Biotechnol. 2013-4-26

[4]
Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

Trends Biotechnol. 2014-9-2

[5]
Microbial remediation mechanisms and applications for lead-contaminated environments.

World J Microbiol Biotechnol. 2022-12-13

[6]
Biotechnological applications of marine bacteria in bioremediation of environments polluted with hydrocarbons and plastics.

Appl Microbiol Biotechnol. 2021-10

[7]
Microbial treatment of metal pollution--a working biotechnology?

Trends Biotechnol. 1993-8

[8]
Deciphering chloramphenicol biotransformation mechanisms and microbial interactions via integrated multi-omics and cultivation-dependent approaches.

Microbiome. 2022-10-24

[9]
Understanding Interaction Patterns within Deep-Sea Microbial Communities and Their Potential Applications.

Mar Drugs. 2022-1-28

[10]
Microbial remediation and plant-microbe interaction under arsenic pollution.

Sci Total Environ. 2023-3-15

引用本文的文献

[1]
Biofilm-mediated bioremediation of xenobiotics and heavy metals: a comprehensive review of microbial ecology, molecular mechanisms, and emerging biotechnological applications.

3 Biotech. 2025-4

[2]
Potential applications of microbial genomics in nuclear non-proliferation.

Front Microbiol. 2024-9-18

[3]
Radioactivity as a driver of bacterial community composition in naturally radioactive mineral springs in the French Massif Central.

Front Microbiol. 2024-7-23

[4]
Dramatic loss of microbial viability in bentonite exposed to heat and gamma radiation: implications for deep geological repository.

World J Microbiol Biotechnol. 2024-7-11

[5]
Unraveling radiation resistance strategies in two bacterial strains from the high background radiation area of Chavara-Neendakara: A comprehensive whole genome analysis.

PLoS One. 2024

[6]
Insights into the Impact of Physicochemical and Microbiological Parameters on the Safety Performance of Deep Geological Repositories.

Microorganisms. 2024-5-19

[7]
Biostimulation of indigenous microbes for uranium bioremediation in former U mine water: multidisciplinary approach assessment.

Environ Sci Pollut Res Int. 2024-1

[8]
Red imported fire ant nesting affects the structure of soil microbial community.

Front Cell Infect Microbiol. 2023

[9]
Towards the microbial home: An overview of developments in next-generation sustainable architecture.

Microb Biotechnol. 2023-6

[10]
Impact of microbial processes on the safety of deep geological repositories for radioactive waste.

Front Microbiol. 2023-3-16

本文引用的文献

[1]
Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditions.

New Phytol. 2002-11

[2]
High-efficient microbial immobilization of solved U(VI) by the Stenotrophomonas strain Br8.

Water Res. 2020-7-1

[3]
Visualizing the invisible: class excursions to ignite children's enthusiasm for microbes.

Microb Biotechnol. 2020-5-14

[4]
Interaction of curium(III) with surface-layer proteins from Lysinibacillus sphaericus JG-A12.

Colloids Surf B Biointerfaces. 2020-6

[5]
U/U signature allows to distinguish environmental emissions of civil nuclear industry from weapons fallout.

Nat Commun. 2020-3-9

[6]
Biosorption of uranium by immobilized Saccharomyces cerevisiae.

J Environ Radioact. 2020-3

[7]
The Potential of Microbial Fuel Cells for Remediation of Heavy Metals from Soil and Water-Review of Application.

Microorganisms. 2019-12-13

[8]
Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable selenium nanoparticles.

J Hazard Mater. 2019-9-3

[9]
The Bioreduction of Selenite under Anaerobic and Alkaline Conditions Analogous to Those Expected for a Deep Geological Repository System.

Molecules. 2019-10-27

[10]
Microbial unknowns at the saline limits for life.

Nat Ecol Evol. 2019-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索