Yu-Wai-Man Patrick, Votruba Marcela, Burté Florence, La Morgia Chiara, Barboni Piero, Carelli Valerio
Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK.
Acta Neuropathol. 2016 Dec;132(6):789-806. doi: 10.1007/s00401-016-1625-2. Epub 2016 Sep 30.
Mitochondrial optic neuropathies constitute an important cause of chronic visual morbidity and registrable blindness in both the paediatric and adult population. It is a genetically heterogeneous group of disorders caused by both mitochondrial DNA (mtDNA) mutations and a growing list of nuclear genetic defects that invariably affect a critical component of the mitochondrial machinery. The two classical paradigms are Leber hereditary optic neuropathy (LHON), which is a primary mtDNA disorder, and autosomal dominant optic atrophy (DOA) secondary to pathogenic mutations within the nuclear gene OPA1 that encodes for a mitochondrial inner membrane protein. The defining neuropathological feature is the preferential loss of retinal ganglion cells (RGCs) within the inner retina but, rather strikingly, the smaller calibre RGCs that constitute the papillomacular bundle are particularly vulnerable, whereas melanopsin-containing RGCs are relatively spared. Although the majority of patients with LHON and DOA will present with isolated optic nerve involvement, some individuals will also develop additional neurological complications pointing towards a greater vulnerability of the central nervous system (CNS) in susceptible mutation carriers. These so-called "plus" phenotypes are mechanistically important as they put the loss of RGCs within the broader perspective of neuronal loss and mitochondrial dysfunction, highlighting common pathways that could be modulated to halt progressive neurodegeneration in other related CNS disorders. The management of patients with mitochondrial optic neuropathies still remains largely supportive, but the development of effective disease-modifying treatments is now within tantalising reach helped by major advances in drug discovery and delivery, and targeted genetic manipulation.
线粒体视神经病变是儿童和成人慢性视力损害及可登记失明的重要原因。它是一组遗传异质性疾病,由线粒体DNA(mtDNA)突变以及越来越多的核基因缺陷引起,这些缺陷总是影响线粒体机制的关键组成部分。两个经典范例是Leber遗传性视神经病变(LHON),它是一种原发性mtDNA疾病,以及由编码线粒体内膜蛋白的核基因OPA1中的致病突变引起的常染色体显性视神经萎缩(DOA)。决定性的神经病理学特征是视网膜内层视网膜神经节细胞(RGC)优先丢失,但相当引人注目的是,构成乳头黄斑束的较小口径RGC特别脆弱,而含黑素视蛋白的RGC相对幸免。虽然大多数LHON和DOA患者将表现为孤立的视神经受累,但一些个体也会出现额外的神经系统并发症,这表明在易感突变携带者中中枢神经系统(CNS)更易受损。这些所谓的“加”表型在机制上很重要,因为它们将RGC的丢失置于神经元丢失和线粒体功能障碍的更广泛背景下,突出了可以调节以阻止其他相关CNS疾病中进行性神经变性的共同途径。线粒体视神经病变患者的管理在很大程度上仍然是支持性的,但在药物发现和递送以及靶向基因操作方面的重大进展有助于有效疾病修饰治疗的发展,现在已经触手可及。