Suppr超能文献

使用残差自助法分析对个体和群体中不同脑区γ-氨基丁酸浓度进行不确定性评估。

Uncertainty assessment of gamma-aminobutyric acid concentration of different brain regions in individual and group using residual bootstrap analysis.

作者信息

Chen Meng, Liao Congyu, Chen Song, Ding Qiuping, Zhu Darong, Liu Hui, Yan Xu, Zhong Jianhui

机构信息

Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.

Department of Radiology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China.

出版信息

Med Biol Eng Comput. 2017 Jun;55(6):1051-1059. doi: 10.1007/s11517-016-1579-5. Epub 2016 Oct 1.

Abstract

The aim of this work is to quantify individual and regional differences in the relative concentration of gamma-aminobutyric acid (GABA) in human brain with in vivo magnetic resonance spectroscopy. Spectral editing Mescher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence and GABA analysis toolkit (Gannet) were used to detect and quantify GABA in anterior cingulate cortex (ACC) and occipital cortex (OCC) of healthy volunteers. Residual bootstrap, a model-based statistical analysis technique, was applied to resample the fitting residuals of GABA from the Gaussian fitting model (referred to as GABA thereafter) in both individual and group data of ACC and OCC. The inter-subject coefficient of variation (CV) of GABA in OCC (20.66 %) and ACC (12.55 %) with residual bootstrap was lower than that of a standard Gaussian model analysis (21.58 % and 16.73 % for OCC and ACC, respectively). The intra-subject uncertainty and CV of OCC were lower than that of ACC in both analyses. The residual bootstrap analysis thus provides a more robust uncertainty estimation of individual and group GABA detection in different brain regions, which may be useful in our understanding of GABA biochemistry in brain and its use for the diagnosis of related neuropsychiatric diseases.

摘要

这项工作的目的是利用活体磁共振波谱技术量化人脑γ-氨基丁酸(GABA)相对浓度的个体差异和区域差异。采用频谱编辑的梅舍尔-加伍德点分辨波谱序列(MEGA-PRESS)和GABA分析工具包(Gannet)来检测和量化健康志愿者前扣带回皮质(ACC)和枕叶皮质(OCC)中的GABA。残差自举法是一种基于模型的统计分析技术,应用于对ACC和OCC个体及组数据中GABA高斯拟合模型的拟合残差进行重采样(此后称为GABA)。采用残差自举法时,OCC中GABA的受试者间变异系数(CV)为20.66%,ACC中为12.55%,低于标准高斯模型分析时的CV(OCC和ACC分别为21.58%和16.73%)。在两种分析中,OCC的受试者内不确定性和CV均低于ACC。因此,残差自举分析为不同脑区个体和组GABA检测提供了更可靠的不确定性估计,这可能有助于我们理解脑内GABA生物化学及其在相关神经精神疾病诊断中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验