Zhou Iris Yuwen, Guo Yingkun, Igarashi Takahiro, Wang Yu, Mandeville Emiri, Chan Suk-Tak, Wen Lingyi, Vangel Mark, Lo Eng H, Ji Xunming, Sun Phillip Zhe
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
NMR Biomed. 2016 Dec;29(12):1670-1677. doi: 10.1002/nbm.3617. Epub 2016 Oct 3.
Diffusion kurtosis imaging (DKI) has been shown to augment diffusion-weighted imaging (DWI) for the definition of irreversible ischemic injury. However, the complexity of cerebral structure/composition makes the kurtosis map heterogeneous, limiting the specificity of kurtosis hyperintensity to acute ischemia. We propose an Inherent COrrelation-based Normalization (ICON) analysis to suppress the intrinsic kurtosis heterogeneity for improved characterization of heterogeneous ischemic tissue injury. Fast DKI and relaxation measurements were performed on normal (n = 10) and stroke rats following middle cerebral artery occlusion (MCAO) (n = 20). We evaluated the correlations between mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) derived from the fast DKI sequence and relaxation rates R and R , and found a highly significant correlation between MK and R (p < 0.001). We showed that ICON analysis suppressed the intrinsic kurtosis heterogeneity in normal cerebral tissue, enabling automated tissue segmentation in an animal stroke model. We found significantly different kurtosis and diffusivity lesion volumes: 147 ± 59 and 180 ± 66 mm , respectively (p = 0.003, paired t-test). The ratio of kurtosis to diffusivity lesion volume was 84% ± 19% (p < 0.001, one-sample t-test). We found that relaxation-normalized MK (RNMK), but not MD, values were significantly different between kurtosis and diffusivity lesions (p < 0.001, analysis of variance). Our study showed that fast DKI with ICON analysis provides a promising means of demarcation of heterogeneous DWI stroke lesions.
扩散峰度成像(DKI)已被证明可增强扩散加权成像(DWI)对不可逆性缺血损伤的定义。然而,脑结构/成分的复杂性使得峰度图具有异质性,限制了峰度高信号对急性缺血的特异性。我们提出基于固有相关性的归一化(ICON)分析,以抑制固有峰度异质性,从而更好地表征异质性缺血组织损伤。对正常大鼠(n = 10)和大脑中动脉闭塞(MCAO)后的中风大鼠(n = 20)进行了快速DKI和弛豫测量。我们评估了从快速DKI序列得出的平均峰度(MK)、平均扩散率(MD)和分数各向异性(FA)与弛豫率R和R之间的相关性,发现MK与R之间存在高度显著的相关性(p < 0.001)。我们表明,ICON分析抑制了正常脑组织中的固有峰度异质性,从而能够在动物中风模型中进行自动组织分割。我们发现峰度和扩散率病变体积存在显著差异:分别为147±59和180±66 mm (p = 0.003,配对t检验)。峰度与扩散率病变体积之比为84%±19%(p < 0.001,单样本t检验)。我们发现,峰度和扩散率病变之间,弛豫归一化的MK(RNMK)值存在显著差异,而MD值则无显著差异(p < 0.001,方差分析)。我们的研究表明,结合ICON分析的快速DKI为区分异质性DWI中风病变提供了一种有前景的方法。