Suppr超能文献

使用重甲基稳定同位素标记氨基酸法(Heavy Methyl SILAC)测定酿酒酵母中的线粒体甲基化蛋白质组。

Determining the Mitochondrial Methyl Proteome in Saccharomyces cerevisiae using Heavy Methyl SILAC.

作者信息

Caslavka Zempel Katelyn E, Vashisht Ajay A, Barshop William D, Wohlschlegel James A, Clarke Steven G

机构信息

Department of Chemistry and Biochemistry and the Molecular Biology Institute and ‡Department of Biological Chemistry and the David Geffen School of Medicine, UCLA , Los Angeles, California 90095, United States.

出版信息

J Proteome Res. 2016 Dec 2;15(12):4436-4451. doi: 10.1021/acs.jproteome.6b00521. Epub 2016 Oct 18.

Abstract

Methylation is a common and abundant post-translational modification. High-throughput proteomic investigations have reported many methylation sites from complex mixtures of proteins. The lack of consistency between parallel studies, resulting from both false positives and missed identifications, suggests problems with both over-reporting and under-reporting methylation sites. However, isotope labeling can be used effectively to address the issue of false-positives, and fractionation of proteins can increase the probability of identifying methylation sites in lower abundance. Here we have adapted heavy methyl SILAC to analyze fractions of the budding yeast Saccharomyces cerevisiae under respiratory conditions to allow for the production of mitochondria, an organelle whose proteins are often overlooked in larger methyl proteome studies. We have found 12 methylation sites on 11 mitochondrial proteins as well as an additional 14 methylation sites on 9 proteins that are nonmitochondrial. Of these methylation sites, 20 sites have not been previously reported. This study represents the first characterization of the yeast mitochondrial methyl proteome and the second proteomic investigation of global mitochondrial methylation to date in any organism.

摘要

甲基化是一种常见且丰富的翻译后修饰。高通量蛋白质组学研究已从复杂的蛋白质混合物中报道了许多甲基化位点。由于假阳性和漏识别导致的平行研究之间缺乏一致性,表明甲基化位点存在过度报道和报道不足的问题。然而,同位素标记可有效用于解决假阳性问题,蛋白质分级分离可提高鉴定低丰度甲基化位点的概率。在这里,我们采用重甲基SILAC来分析呼吸条件下出芽酵母酿酒酵母的各组分,以利于线粒体的产生,线粒体是一种其蛋白质在较大规模甲基蛋白质组研究中常被忽视的细胞器。我们在11种线粒体蛋白上发现了12个甲基化位点,以及在9种非线粒体蛋白上发现了另外14个甲基化位点。在这些甲基化位点中,有20个位点此前尚未见报道。本研究首次对酵母线粒体甲基蛋白质组进行了表征,也是迄今为止对任何生物体中全局线粒体甲基化的第二项蛋白质组学研究。

相似文献

1
Determining the Mitochondrial Methyl Proteome in Saccharomyces cerevisiae using Heavy Methyl SILAC.
J Proteome Res. 2016 Dec 2;15(12):4436-4451. doi: 10.1021/acs.jproteome.6b00521. Epub 2016 Oct 18.
2
Complete Native Stable Isotope Labeling by Amino Acids of Saccharomyces cerevisiae for Global Proteomic Analysis.
Anal Chem. 2018 Sep 4;90(17):10501-10509. doi: 10.1021/acs.analchem.8b02557. Epub 2018 Aug 23.
3
2nSILAC for Quantitative Proteomics of Prototrophic Baker's Yeast.
Methods Mol Biol. 2021;2228:253-270. doi: 10.1007/978-1-0716-1024-4_18.
4
Proteomic analysis of protein methylation in the yeast Saccharomyces cerevisiae.
J Proteomics. 2015 Jan 30;114:226-33. doi: 10.1016/j.jprot.2014.07.032. Epub 2014 Aug 8.
6
Identifying and quantifying in vivo methylation sites by heavy methyl SILAC.
Nat Methods. 2004 Nov;1(2):119-26. doi: 10.1038/nmeth715. Epub 2004 Oct 21.
7
Discovery of Arginine Methylation, Phosphorylation, and Their Co-occurrence in Condensate-Associated Proteins in .
J Proteome Res. 2021 May 7;20(5):2420-2434. doi: 10.1021/acs.jproteome.0c00927. Epub 2021 Apr 15.
8
The proteome of baker's yeast mitochondria.
Mitochondrion. 2017 Mar;33:15-21. doi: 10.1016/j.mito.2016.08.007. Epub 2016 Aug 14.
10
Analysis of the proteome of Saccharomyces cerevisiae for methylarginine.
J Proteome Res. 2013 Sep 6;12(9):3884-99. doi: 10.1021/pr400556c. Epub 2013 Aug 13.

引用本文的文献

1
The protein methylation network in yeast: A landmark in completeness for a eukaryotic post-translational modification.
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2215431120. doi: 10.1073/pnas.2215431120. Epub 2023 May 30.
2
Histone modification in : A review of the current status.
Comput Struct Biotechnol J. 2023 Feb 24;21:1843-1850. doi: 10.1016/j.csbj.2023.02.037. eCollection 2023.
3
Protein methylation in mitochondria.
J Biol Chem. 2022 Apr;298(4):101791. doi: 10.1016/j.jbc.2022.101791. Epub 2022 Mar 3.
4
Arginine and lysine methylation of MRPS23 promotes breast cancer metastasis through regulating OXPHOS.
Oncogene. 2021 May;40(20):3548-3563. doi: 10.1038/s41388-021-01785-7. Epub 2021 Apr 29.
5
Characterization of Lysine Monomethylome and Methyltransferase in Model Cyanobacterium Synechocystis sp. PCC 6803.
Genomics Proteomics Bioinformatics. 2020 Jun;18(3):289-304. doi: 10.1016/j.gpb.2019.04.005. Epub 2020 Oct 30.
6
Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code.
J Biol Chem. 2020 Jul 31;295(31):10689-10708. doi: 10.1074/jbc.REV120.011666. Epub 2020 Jun 9.
7
A crucial RNA-binding lysine residue in the Nab3 RRM domain undergoes SET1 and SET3-responsive methylation.
Nucleic Acids Res. 2020 Apr 6;48(6):2897-2911. doi: 10.1093/nar/gkaa029.
8
Using Yeast to Define the Regulatory Role of Protein Lysine Methylation.
Curr Protein Pept Sci. 2020;21(7):690-698. doi: 10.2174/1389203720666191023150727.
9
Metabolic labeling in middle-down proteomics allows for investigation of the dynamics of the histone code.
Epigenetics Chromatin. 2017 Jul 6;10(1):34. doi: 10.1186/s13072-017-0139-z.
10
Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.
J Biol Chem. 2017 Jul 21;292(29):12025-12040. doi: 10.1074/jbc.M117.775981. Epub 2017 May 22.

本文引用的文献

1
Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates.
Mol Cell Proteomics. 2016 Mar;15(3):989-1006. doi: 10.1074/mcp.M115.055384. Epub 2015 Dec 23.
3
Saccharomyces cerevisiae Eukaryotic Elongation Factor 1A (eEF1A) Is Methylated at Lys-390 by a METTL21-Like Methyltransferase.
PLoS One. 2015 Jun 26;10(6):e0131426. doi: 10.1371/journal.pone.0131426. eCollection 2015.
5
Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation.
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):E3327-36. doi: 10.1073/pnas.1509658112. Epub 2015 Jun 16.
6
Expanding the yeast protein arginine methylome.
Proteomics. 2015 Sep;15(18):3232-43. doi: 10.1002/pmic.201500032. Epub 2015 Jul 2.
7
Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies.
Dis Model Mech. 2015 Jun;8(6):509-26. doi: 10.1242/dmm.020438.
8
9
The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc. 2015 Jun;10(6):845-58. doi: 10.1038/nprot.2015.053. Epub 2015 May 7.
10
Lysine methylation modulates the protein-protein interactions of yeast cytochrome C Cyc1p.
Proteomics. 2015 Jul;15(13):2166-76. doi: 10.1002/pmic.201400521. Epub 2015 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验